Tumor Based Screening for Lynch Syndrome

Marc S. Williams, MD, FAAP, FACMG
Director, Intermountain Healthcare Clinical
Genetics Institute
IOM Clinical Practice and Public Health
March 22, 2010

Colorectal Cancer

- n Colorectal Cancer (CRC) is a common and lethal cancer affecting men and women
- n 5-10% of CRC is familial
- n 1-5% of CRC is due to mutations in single genes
 - n Subset of these mutations causes Lynch syndrome

Lynch syndrome

- Also called Hereditary Non-Polyposis Colorectal Cancer syndrome (HNPCC)
 - n 2-4% of all colon cancers
 - n Associated with small numbers of polyps
 - Increased risk of cancers of the stomach, small intestine, liver, gallbladder ducts, upper urinary tract, brain, skin, and prostate
 - n Women at increased risk for endometrial and ovarian cancer
 - n Four DNA mismatch repair genes (MMR) responsible
 - n Autosomal dominant inheritance
 - n Mutation carriers have 20-65% lifetime risk of CRC

Lynch syndrome screening-Why?

- n Impact on patient
 - n Potential impact on treatment
 - n Some recommend offering sub-total colectomy
 - n Better prognosis than sporadic CRC
 - n Impact on surveillance for CRC and other cancers
 - n Prophylactic surgery (TAH-BSO)
 - n Frequency of colonoscopy

Lynch syndrome screening-Why?

- n Impact on family members
 - n On average 3 affected family members for each proband
 - n Low cost of familial mutation analysis
 - Looking for family mutation/rearrangement
 - n Impact on surveillance for CRC and other cancers
 - n Endometrial screening or prophylactic surgery (TAH-BSO)
 - n Age of initiation and frequency of colonoscopy
 - Published models indicate this makes screening cost-effective (and perhaps even cost-saving)

Lynch syndrome-Public Health Impact

- n 142,000 newly diagnosed cases of CRC annually
 - n ~4250 have LS (based on 3% prevalence
 - n ~8500-12750 relatives of probands with LS
- n Highly effective screening test
 - n Screening recommendations for LS patients different
 - n Screen early
 - n Decreased interval between screens
- n Definitive diagnostic test
- Effective interventions if pre-cancerous polyps detected
 - n Estimate prevent ~2500 cases of CRC annually

Lynch syndrome-Possible screening strategies

- Positive family history of CRC and associated cancers
 - n Amsterdam and Bethesda criteria
- n Tumor characteristics (Medullary growth, mucinous, signet ring, lymphocytic infiltration)
- n Younger age of onset
- Presence of synchronous and/or metachronous CRC

All are insufficiently sensitive to identify more than 50% of patients alone or in combination

Lynch syndrome-new strategy

- Screen tumors of patients presenting with CRC using techniques specific to Lynch syndrome
 - n If screen positive confirm with mutation testing
 - n Followed by familial case finding in confirmed +
- n Two potential techniques
 - n Assess tumor for micro-satellite instability
 - n Pursue additional testing for patients whose tumor is unstable
 - n Use immunohistochemical (IHC) staining of the MMR proteins
 - Pursue additional testing for patients with abnormal staining

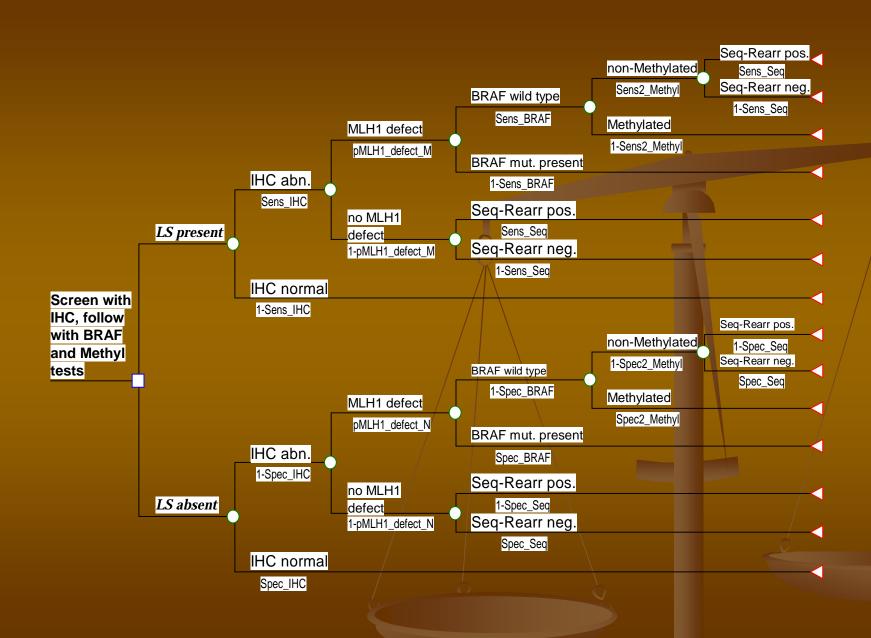
Lynch syndrome screening-Evidence

- n Recommendations published January 2009 by Evaluation of Genomic Applications in Practice and Prevention (EGAPP) working group
- n Confirms FH inconsistent screen compared to tumorbased testing
- n Supports tumor based testing approach
 - n Evidence insufficient to determine if IHC or MSI screening superior
 - n Some evidence for role of BRAF testing if MLH1 stain abnormal
 - n Adequate evidence of clinical utility *if* relatives identified, tested and comply with enhanced screening
- n Little evidence on cost-benefit

Lynch syndrome screening-Evidence

- n Cost-effectiveness (Mvundra et al. 2010)
 - n Screening for LS in all newly diagnosed CRC ICER of </=\$45,000/life year saved compared with no testing
 - If restrict testing to cases presenting under age 50 ICER increases to </=\$75,000
 - n Modeled IHC-first and MSI-first screening
 - n IHC superior first screen with ICER </=\$25,000/life year saved
 - n Conclusion: tumor based screening cost effective from US health care system perspective

What is Public Health?


- n United States has fragmented delivery system
- Screening for LS cannot be done by State Public Health Departments
- n Responsibility falls to providers and delivery systems
- Nhat does cost-effective mean from their perspective?

Illustration

- n Assessment of LS screening for Intermountain Healthcare (integrated delivery system)
- n Did formal modeling of various test scenarios
 - n Used IHC-first strategy
 - n No age cut-off
 - n Endpoint cost per case detected
 - n Assigned cost to entities within system

variable description	base	range	source	cost	distribution
IHC sensitivity	.94	.90—.98	Hampel, **	\$230*	triangular
IHC specificity	.88	.84—.92	Hampel, **		triangular
BRAF sensitivity	.69	.57—.79	Palomaki	\$305	triangular
BRAF specificity	.995	.98—1.0	Palomaki		triangular
Seq-Rearr sensitivity	.99	.98—1.0	++, others	\$1,380*	triangular
Seq- Rearr specificity	.99	.98—1.0	**, others		triangular
Methyl. sensitivity	.93	.88—.98	Bouzourene, Chang	\$295*	triangular
Methyl. specificity	.98	.95—1.0	Bouzourene, Chang		triangular
Methyl. sensi-2 (after <i>BRAF</i>)	.925	.875—.975	Bouzourene, Chang	\$295*	triangular
Methyl. spec-2 (after <i>BRAF</i>)	.99	.95—1.0	Bouzourene, Chang		triangular
prevalence of LS among all CRC cases	0.036	.028—.044	Hampel, expert opinion		beta general
propor. of <i>MLH1</i> defects among abn. IHC given presence of LS	0.2353	.1985—.272	calculated from Hampel et al 2008 and 2005	-	beta general
propor. of <i>MLH1</i> defects among abn. IHC given absence of LS	0.8148	.733—.8985	calculated from Hampel et al 2008 and 2005	-	beta general

^{*}True costs from referral lab used

100 CRC cases	total cost to test	incremental increase in cost	# LS cases found	increase in cases found versus protocol above	average cost per case detected	cost to find additional case of LS
protocol IHC with BRAF and	\$35,203		3.28		\$10,730	
Methylation IHC with	, , , , , , , , , , , , , , , , , , ,					
Methylation (no BRAF)	\$37,369	\$2,166	3.29	0.0076	\$11,363	285,807
IHC with <i>BRAF</i> (no Methylation)	\$38,338	\$969	3.34	0.0512	\$11,481	\$19,056
IHC straight to Sequencing	\$44,652	\$6,313	3.35	0.0039	\$13,355	\$1,604,113

Outcomes

```
Measure
                                                                      Report
# of CRC cases
                                                                      Path auto-report
         Breakdown by hospital
                                                                      Path auto-report
# CRC cases sent for IHC
                                                                      Path auto-report
# IHC normal
                                                                      Path auto-report
# IHC abnormal
                                                                      Path auto-report
         #MSH2, MSH6, PMS2 abnormal
                                                                      Path auto-report
         #MLH1 abnormal BRAF +
                                                                      Path auto-report
         #MLH1 abnormal promoter methylation +
                                                                      Path auto-report
         #MLH1 abnormal, BRAF and methylation -
                                                                      Path auto-report
# true positive patients contacted by CGC
                                                                      Jim/Janet
# true positive patient physicians contacted by CGC
                                                                      Jim/Janet
# attending counseling session
                                                                      Jim/Janet
# declining counseling (reason)
                                                                      Jim/Janet
# pursuing confirmatory genetic testing
                                                                      Jim/Janet
# declining confirmatory genetic testing (reason)
                                                                      Jim/Janet
# tested with mutation found
                                                                      Jim/Janet
# tested with no mutation found
                                                                      Jim/Janet
Insurance coverage for testing
                                                                      Jim/Janet
For mutation + patients--Relatives
         # at risk relatives
                                                                      Jim/Janet
         # presenting for counseling
                                                                      Jim/Janet
         # pursuing familial mutation testing
                                                                      Jim/Janet
         # mutation +
                                                                      Jim/Janet
         # mutation -
                                                                      Jim/Janet
         # declining testing (reason)
         # relatives pursuing screening (type)
                                                                      Jim/Janet
                        Mutation +
                                                                      Jim/Janet
                        Mutation -
                                                                      Jim/Janet
                        Mutation unknown
                                                                      Jim/Janet
         # patients with polyps
                                                                      Jim/Janet
         # patients with CRC
                                                                      Jim/Janet
                        Stage
                                                                      Jim/Janet
```

Lynch syndrome-Impact on delivery system

- n Improved quality and consistency of care
- n Hospital bears cost of screening program (DRG)
- Increased revenue for providers, hospitals, outpatient surgery centers
- n Opportunity to bring new patients into system
- n Small increase in costs for health plan
 - n Potential for significant avoided costs due to prevention of cancer (particularly in relatives)
 - n Consistent with coverage benefit?

Impact on patients and family

n Patient

- n Information on surveillance
- n Possible impact on treatment
- n Prognosis better
- n Privacy issues
 - n Mitigated as they already have expressed disease

n Family

- n Identify high risk individuals
- Opportunities for primary prevention in high risk individuals
- n Reassurance for family members without Lynch syndrome
 - Perhaps greater risk as disease may not be manifest in many

Reaction to information

- n Intermountain Healthcare chose to implement
 - n Information sheet provided
 - n No consent for IHC
 - n Full counseling and consent for confirmatory mutation testing (patient and family)
- n Variations implemented at 24 other systems (e.g. Mayo, Cleveland Clinic, 20 use age cutoff, 4 screen all)

Reactor Panel

- n Andrew Spiegel, CEO, Colon Cancer Alliance
- n Mark Boguski, Associate Professor, Center for Biomedical Informatics, Harvard Medical School
- Roy Gandolfi, AssociateMedical Director, SelectHealth
- n Dennis Salisbury, Family Practice Physician, Rocky Mountain Clinic, Butte, MT
- n Don Lyman, Chief, Chronic Disease and Injury Control Division, California Department of Public Health

