
(Access to large scale data networks)

BETTER MAPS OF DISEASE

NOT JUST WHAT BUT HOW

BUILDING A COMMONS FOR EVOLVING
GENERATIVE MODELS OF DISEASE



Academia



Biotech



Industry



Sage Bionetworks

Non-Profit 

Sharing data and Building integrative disease models



Existing approaches and issues

Cancer- 75% of drugs approved- ”standards of care” lack significant impact

25,000 components with 3,269 associated with disease-yet only hundreds  
targeted for therapies

Current costs for drug approval- ~$1Billion – 5 -10 years

~10% of therapies in Phase I trials will lead to approval

Several specific disease efforts spending ~ $1/3 Billion/year or more to develop 
therapies
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• Generate data need to build
• bionetworks
• Assemble other available data useful for building networks
• Integrate and build models
• Test predictions
• Develop treatments
• Design Predictive Markers

Merck Inc. Co.
5 Year Program
Based at Rosetta
Total Resources
>$150M

The “Rosetta Integrative Genomics Experiment”: Generation, assembly,  
and integration of data to build models that predict clinical outcome



trait

How is genomic data used to understand biology?

“Standard” GWAS Approaches Profiling Approaches

“Integrated” Genetics Approaches

Genome scale profiling provide correlates of 
disease

Ø Many examples BUT what is cause and effect?

Identifies Causative DNA 
Variation but provides NO 

mechanism

Ø Provide unbiased view 
of molecular physiology  
as it relates to disease 

phenotypes
Ø Insights on mechanism
Ø Provide causal 

relationships and allows 
predictions

RNA amplification
Microarray hybirdization

Gene Index
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Integration of Genotypic, Gene Expression & Trait Data

Causal Inference

Schadt et al. Nature Genetics 37: 710  
(2005)

Millstein et al. BMC Genetics10: 23 (2009)

Chen et al. Nature 452:429 (2008)
Zhang & Horvath. Stat.Appl.Genet.Mol.Biol. 4: article 17 

(2005)

Zhu et al. Cytogenet Genome Res. 105:363 
(2004)

Zhu et al. PLoS Comput. Biol. 3: e69 (2007)

“Global Coherent Datasets”
• population based

• 100s-1000s individuals



Preliminary Probabalistic Models- Rosetta /Schadt

Gene symbol Gene name Variance of OFPM 
explained by gene 
expression*

Mouse 
model

Source

Zfp90 Zinc finger protein 90 68% tg Constructed using BAC transgenics

Gas7 Growth arrest specific 7 68% tg Constructed using BAC transgenics

Gpx3 Glutathione peroxidase 3 61% tg Provided by Prof. Oleg 
Mirochnitchenko (University of 
Medicine and Dentistry at New 
Jersey, NJ) [12]

Lactb Lactamase beta 52% tg Constructed using BAC transgenics

Me1 Malic enzyme 1 52% ko Naturally occurring KO

Gyk Glycerol kinase 46% ko Provided by Dr. Katrina Dipple 
(UCLA) [13]

Lpl Lipoprotein lipase 46% ko Provided by Dr. Ira Goldberg 
(Columbia University, NY) [11]

C3ar1 Complement component 
3a receptor 1

46% ko Purchased from Deltagen, CA

Tgfbr2 Transforming growth 
factor beta receptor 2

39% ko Purchased from Deltagen, CA

Networks facilitate direct 
identification of genes that are 

causal for disease
Evolutionarily tolerated weak spots

Nat Genet (2005) 205:370



"Genetics of gene expression surveyed in maize, mouse and man." Nature. (2003)
"Variations in DNA elucidate molecular networks that cause disease." Nature. (2008)
"Genetics of gene expression and its effect on disease." Nature. (2008) 

"Validation of candidate causal genes for obesity that affect..." Nat Genet. (2009)
….. Plus  10 additional papers in Genome Research, PLoS Genetics, PLoS Comp.Biology,  etc

"Identification of pathways for atherosclerosis." Circ Res. (2007) 
"Mapping the genetic architecture of gene expression in human liver." PLoS Biol. (2008) 

…… Plus  5 additional papers in Genome Res., Genomics, Mamm.Genome

"Integrating genotypic and expression data …for bone traits…" Nat Genet. (2005) 
“..approach to identify candidate genes regulating BMD…" J Bone Miner Res. (2009) 

"An integrative genomics approach to infer causal associations ...” Nat Genet. (2005)
"Increasing the power to detect causal associations… “PLoS Comput Biol. (2007)
"Integrating large-scale functional genomic data ..." Nat Genet. (2008) 
…… Plus 3 additional papers in PLoS Genet., BMC Genet.

d

Metabolic 
Disease

CVD

Bone

Methods

Extensive Publications now Substantiating Scientific Approach
Probabilistic Causal Bionetwork Models

• >60 Publications from Rosetta Genetics Group (~30 scientists) over 5 years 
including high profile papers in PLoS Nature and Nature Genetics



• #1 - Connect associated SNP to true gene underlying mechanism via Genetics of Gene Expression
– Workflow - Start with a GWAS or other association between DNA variation and a clinical phenotype, need to understand 

what genes and ultimately mechanism underlie that association. Here we use our human eSNPs, SNP-set-enrichment, 
mouse causal genes, and similarities between human and mouse networks to determine plausible genes and network 
neighborhoods through which the information encoded in that DNA variation manifests as phenotype.

• #2 - Identify new targets and progress through validation as disease genes toward pharmacologic validation
– Workflow – Predicting genes that contribute to disease phenotypes using causality and network modeling. 

Multiple examples that validate based on a single-gene intervention in a model system, and ultimately 
progresses toward in vivo pharmacology.

• #3 - Reposition a drug
– Workflow - Really a special case of the new target identification, where the workflow starts with a number of 

targets for which good, "safe" compounds exist, and then we apply all the standard approaches we have to 
validate the target and test the compound for an indication in preclinical species or humans

• #4 - Kill a compound with confidence that opportunities to segment the target population were fully explored.
– Workflow - Take Phase II or III trial where efficacy is not seeming strong, or where adverse experiences 

appear mechanism-based.  Then use genetics in the trial + the network approaches outlined in case #1 above 
to demonstrate that a significant segment of the population for which the drug would have substantial net 
benefit is unlikely to exist.

• #5 - Define clinically relevant subpopulations
– Workflow - Similar to #4 above, but typically starting at an earlier stage to incorporate hypotheses about 

population segments early enough in the development process that they are easily tested prospectively.

• #6 - Avoid liability
– Workflow - Apply a pipeline of standard checks to expression profiling from knockout, siRNA, and compound 

treatments for a target that encompasses mapping the expression signatures to all relevant tissue networks, 
looking to see what annotations and other gene expression signatures map to the modules where those 
intervention signatures map, and following up any leads. 



db/db mouse
(p~10E(-30))

AVANDIA in db/db mouse

= up regulated
= down regulated

Our ability to integrate compound data into our network analyses

db/db mouse
(p~10E(-20)
p~10E(-100))



Impact on Merck Pipeline

“The investment has paid off for us.”
--Peter Kim, president of Merck Research Laboratory

‘The company now has in clinical trials eight drugs that emerged out of 
Rosetta’s platform, Dr. Kim said, with more than a dozen others in 
preclinical trials. He declined to provide specifics about the costs of 
the candidate drugs. ‘

‘Dr . Kim said that Merck was developing some cancer drugs that would 
be directed at various subpopulations of patients rather than the 
one-size-fits-all approach that has been a hallmark of modern 
pharmaceutical companies. “We’re going to target specific 
networks and pathways,”he said. ‘

NY Times, August 25, 2009



details at:
http://sagebase.org/research/publications.html

http://sagebase.org/research/publications.html


Integration of 
transcriptional interactions 

with causal or functional 
links

Network based study of 
disease

Pathway assembly via 
integration of networks

Network evolutionary 
comparison / cross-
species alignment to 
identify conserved 

modules

Projection of molecular 
profiles on protein 

networks to reveal active 
modules

Alignment of physical and 
genetic networks

Identification of networks 
associated with cancer 

progression

Network-based cancer 
diagnosis / prognosis

Moving from genome-wide 
association studies 

(GWAS) to network-wide 
“pathway” association 

(NWAS)

Assembling Networks for Use in the Clinic

The Working Map



Exploring the Global Landscape of Human Disease Through Public Data

CommonalitiesDifferences

Public data 
enables 

quantitative
disease 

relationships

High quality 
signals exist 
in public data

Genetic architecture 
of autoimmune 

diseases

Plasma proteome 
networks

Functional gene 
module networks

Which 
biomarkers best 

discriminate 
diseases?

Is there a 
blood 

biomarker for 
general 

pathology?

Are there 
genetic 

“switches”
for 

autoimmunity
?

Do common 
modules 
harbor 

pluripotent 
drug targets?

Which modules 
are unique to 

metabolic 
diseases?

Is there a 
common 

autoimmune 
susceptibility 

variant?

Joel Dudley et al.. Molecular systems 
biology (2009) vol. 5 pp. 307

Silpa Suthram et al. PLoS 
computational biology (2010) vol. 6 (2) 

pp. e1000662

Joel Dudley and 
Atul Butte. Pacific 

Symposium on 
Biocomputing 

(2009) pp. 27-38

Marina Sirota et 
al. PLoS genetics 
(2009) vol. 5 (12) 

pp. e1000792

Silpa Suthram et 
al. PLoS 

computational 
biology (2010) 
vol. 6 (2) pp. 

e1000662



what we see...



.
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The stunning technologies coming will generate heaps of genomic 
data poised to

Bionetworks using integrative genomic approaches can highlight the 
non-redundant components- can find drivers of the disease and 
of therapies

Need to develop ways to host massive amounts of data, tools, 
evolving representations of disease as represented by these 
probabilistic causal disease models



Recognition that the benefits of bionetwork based molecular 
models of diseases are powerful but that they require 
significant resources

Appreciation that it will require decades of evolving 
representations as real complexity emerges and needs to be 
integrated with therapeutic interventions



Willingness at Merck to imagine a world where  all of   
disease biology was considered  precompetitive space.

Realizing the donation by Merck might seed a “commons”
allowing a potential long term gain to the whole community 
provided by evolving models  of disease built via a 
contributor network



Sage Mission
Sage Bionetworks is a non-profit organization with a vision to 

create a “commons” where integrative bionetworks are evolved by 
contributor scientists with a shared vision to accelerate the 

elimination of human disease
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Sage Bionetworks



Sage Bionetworks



Example 1: Alzheimer’s Disease

Ø Cross-tissue coexpression networks 
for both normal and AD brains
• prefrontal cortex, cerebellum, 

visual cortex
Ø Differential network analysis on AD 

and normal networks
Ø Integrate coexpression networks 

and Bayesian networks to identify 
key regulators for the modules 
associated with AD 

subset samples
Alzh_PFC 310
Alzh_CR 263
Alzh_VC 190
Norm_PFC 153
Norm_CR 128
Norm_VC 121

32



nerve ensheathment

Glutathione transferase

extracellular matrix

Gain connectivity by 91 fold

Lose connectivity by 40%

Gain connectivity by 1.9 fold

Module Connectivity Change (AD/Normal)

Identification of Disease (AD) Pathways via 
Comparative Gene Network Analysis

40,000 genes from three tissues

Bayesian Subnetworks

Control
(PFC, CB, VC)

AD
(PFC, CB, VC)
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Key Regulators
pink hits red hits tan hits
PECAM1.VC 70 ENPP2.PFC 296 SLC22A2.PFC 238
XM_211501.VC 62 PLLP .PFC 135 OGN.PFC 120
GON4L.VC 52 PLP1.PFC 133 KIAA1199.PFC 83
GNPTAB.VC 45 FRYL.PFC 129 AK021858.PFC 77
GSTA4.VC 45 SLC44A1.PFC 129 Contig39710_RC.PFC 66
hCT24928.VC 41 Contig43380_RC.PFC 125 SPTLC2L.PFC 64
RAB2.VC 41 PLEKHH1.PFC 123 COL6A3.PFC 62
HIST1H2BA.VC 38 UGT8.PFC 118 PTGDR.PFC 54
ENST00000283038.VC 35 AL137342.PFC 112 XM_068880.PFC 48
hCT1959721.VC 35 TTYH2.PFC 87 NM_018242.PFC 47
OR6S1.VC 31 PSEN1.PFC 73 SVIL.PFC 47
DOCK6.VC 30 TRIM59.PFC 73 CLIC6.PFC 43
ENST00000293571.VC 28 FA2H.PFC 69 OLFML2A.PFC 31
OR12D3.VC 28 KIAA1189.PFC 61 MYH11.PFC 27
AK055724.VC 27 CREB5.PFC 59 MRC2.PFC 26
Contig33276_RC.VC 25 AB037815.PFC 57 Contig16712_RC.PFC 25
hCT1658538.VC 25 MAP7.PFC 46 WNT6.PFC 25
ABCC2.VC 23 ABCA2.PFC 41 C1S.PFC 21
AK057434.VC 19 NM_014711.PFC 41 DAB2.PFC 20
hCT1660876.VC 17 NM_175922.PFC 39 PCOLCE.PFC 20
MYOHD1.VC 17 FRMD4B.PFC 38 SLPI.PFC 19
hCT1644335.VC 16 RTKN.PFC 36 Contig47865.PFC 17
HSS00083045.VC 16 NM_144595.PFC 35 FCGR2B.PFC 15
PIGV.VC 16 FOLH1.PFC 34 TBX15.PFC 14
RAC3.PFC 16 SEPT4.PFC 32 COL3A1.PFC 12
WDR23.PFC 16 LAMP2.PFC 31 SCARA5.PFC 12

PECAM1: Platelet-endothelial 
cell adhesion molecule, a 

tyrosine phosphatase activator 
that plays a role in the platelet 

activation, increased expression 
correlates with MS, Crohn 

disease, chronic B-cell leukemia, 
rheumatoid arthritis, and 

ulcerative colitis

ENPP2: Phosphodiesterase I 
alpha, a lysophospholipase that 
acts in chemotaxis, phosphatidic 

acid biosynthesis, regulates 
apoptosis and PKB signaling; 

aberrant expression is 
associated with Alzheimer type 

dementia, major depressive 
disorder, and various cancers

SLC22A25: solute carrier family 
22, member 25, Protein with 

high similarity to mouse 
Slc22a19, which is a renal 

steroid sulfate transporter that 
plays a role in the uptake of 

estrone sulfate, member of the 
sugar (and other) transporter 
family and the major facilitator 

superfamilyGlutathione Transferase Module (Pink)

• 983 probes from all three brain regions (9% from CB, 15% from PFC and 76% from VC)
• Most predictive of Braak severity score 

GlutathioneTransferase  NerveEnsheathment   ExtracellularMatrix
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Example 2: Sage Non-Responders Cancer Project

Patient Oriented Cohort Study to ID Non-Responders to Approved CA Drugs

Co-Chairs- Stephen Friend Charles Saywers Todd Golub & Rich Schilsky

Multiple Myeloma- Ken Anderson/ DFCI- Kathy Guiste/MMRF
AML at First Relapse- Fred Applebaum /FHCRC- Louis deGennaro/LLS
Non-Small Cell Lung Cancer- Roy Herbst MD Anderson / “LCA”
Ovarian Cancer- Beth Karlan/Cedar Sinai- Laura Shawver:/Clearity Foundation
Breast Cancer- Laura Esserman/UCSF- “TBD”

Molecular Profiling: Levine, Polit, Levine

Patient Outreach: Live Strong-Lance Armstrong Foundation/ 23andMe



Platform: Global Coherent Datasets

A data set containing genome-wide DNA variation and 
intermediate trait, as well as physiological phenotype data across a 
population of individuals large enough to power association or 
linkage studies, typically 50 or more individuals. To be coherent, 
the data needs to be matched with consistent identifiers. 
Intermediate traits are typically gene expression, but may also 
include proteomic, metabolomic, and other molecular data. 

GCDs are current state of knowledge and subject to change as more information becomes available to 
Sage



Platform: Models available in Sage Repository
Dataset Clinical Genotype Expression Copy Number 

Variations
Networks

Human Cancer Breast 
BCCA

No No No No Bayesian and Coexpression

Mouse CVD Adipose, 
Liver , Brain, Muscle 
UCLA

Yes Yes Yes No Bayesian and Coexpression

Human CVD Liver 
Vanderbilt/
Pittsburg/St Judes

Yes dbGaP Yes No Bayesian and Coexpression

Differentiating ES cell 
regulation

No No No No Interaction

Human B-Cell 
Interactome

No No No No Interaction

Human Cancer HCC 
HKU

Yes No Yes No Bayesian and Coexpression

Human Cancer 
Glioblastoma TCGA

No No No No Bayesian and Coexpression

Yeast Genetic 
Interaction Map

No No No No Interaction



Platform:  Tools- Download Page for Repository

http://www.sagebase.org/research/tools.html

http://www.sagebase.org/research/tools.html


NOT JUST WHAT BUT HOW



.



data mining
“my data’s mine, and your data’s mine”

attribution: carole goble- sidney brenner



this must be integrated.
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sharing as an adoption of common standards..
Clinical   Genomics  Privacy   IP  



PATIENTS 
DATA AND SAMPLES

THERAPIES









Sage Commons Congress

San Francisco

April 23-24 2010

Josh Sommers: Interlab and Intralab Communication



EXTENDING STANDARD AGREEMENTS FOR DATA SHARING-
FUNDERS AND PUBLISHERS
All data supporting the publication shall be made available for download from a digital repository 

under terms and conditions no more restrictive than the Science Commons Protocol for 
Implementing Open Access Data {http://sciencecommons.org/projects/publishing/open-access-
data-protocol/},
upon:

a) six (6) months after any publication describing the results of the funded research project;
b) twelve (12) months after the completion of the research project; or
c) twelve (12) months after the expiration or termination of the Grant

Agreement,whichever is earliest, and subject to any reasonable delay necessary to evaluate for 
patentability and to file any patent applications. Grantee may comply with the above 
requirement either by: Depositing a copy of the data in a third party digital repository from 
which it may be downloaded free of charge, or Offer such data for download on a Website 
without charge, or Offer to distribute such data on any medium which is commonly used, 
subject to a reasonable charge for the cost of reproduction and distribution. Deposit of 
Unpublished Data

Grantee shall deposit a copy of all data created in the course of the funded research project in 
Grantor’s data repository no later than six (6) months from the date of creation. The data so 
deposited shall be used by Grantor only for its own internal quality analysis and shall not be 
published by Grantor, until such data otherwise becomes publicly available.

http://sciencecommons.org/projects/publishing/open-access


How to Host Network Models

Sage Bionetworks is working on a major
agreement with a major Publisher



We will need to develop ways to host massive amounts of data, evolving 
representations of disease as represented by these probabilistic causal 
disease models

We will need to learn how to share data, and models and fundamental change 
how we fund and reward science- head towards a more contributor distributed 

world 

The patient and their disease foundations will be at the center of this world 
where disease biology will exist in  pre-competitive space surrounded by IT 

partners, knowledge experts NIH, pharma, insurers, diagnostic companies



Institutional Analysis  and Development Framework (Ostrom) to Examine the 
Current Rules and Structures that define Current  Approaches to Drug 

Discovery-could enable the Next Generation Discovery Engines

Personal Peer Incentives
Academic Institutions and their Reward structures

Institutional IP Rules
Pharmaceutical Industry Rewards

Publishers
Venture Capitalists
Physician Trialists



BETTER MAPS OF DISEASE

NOT JUST WHAT BUT HOW

BUILDING A COMMONS FOR EVOLVING
GENERATIVE MODELS OF DISEASE

Specific Proposals:
1- Adopt Sharing rules for making data accessible
2- Engage/Support Non-Responders to Approved Oncology 

Drug Cohort Study
3- Collect Control Arms for Clinical Trials where genomics    

data (SNPs and RNA expression) was obtained
4- Build Disease specific IP free zone: shared data/tools/models


