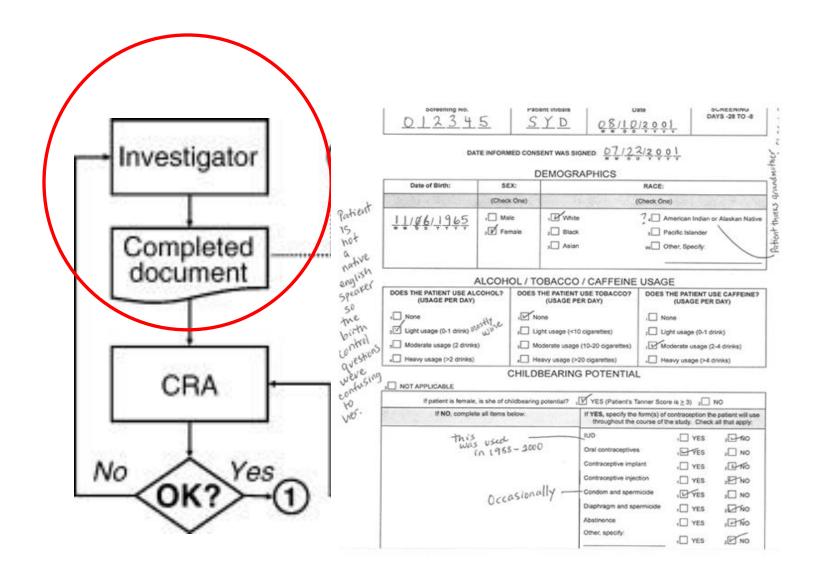


Sharing Clinical Research Data An Institute of Medicine Workshop October 4 & 5, 2012 Washington, DC

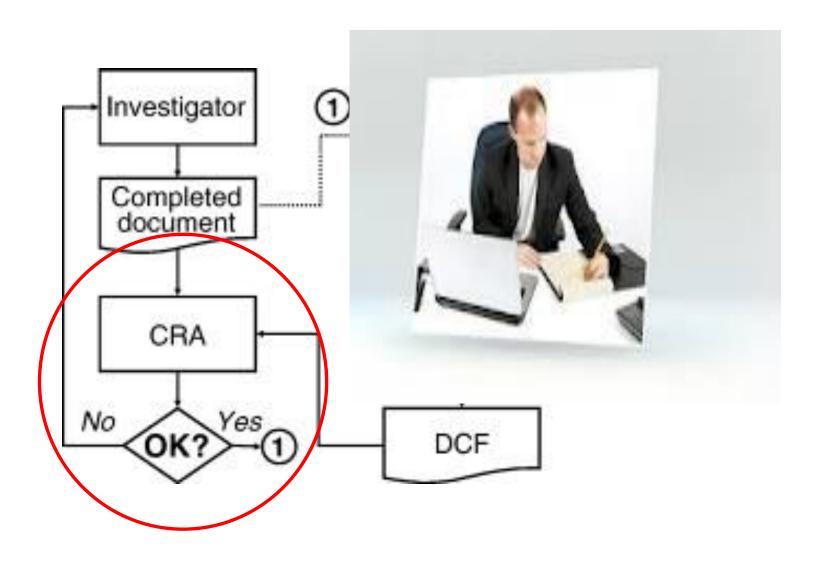
Fundamentals and Benefits of Sharing Participant-Level Clinical Trial Data

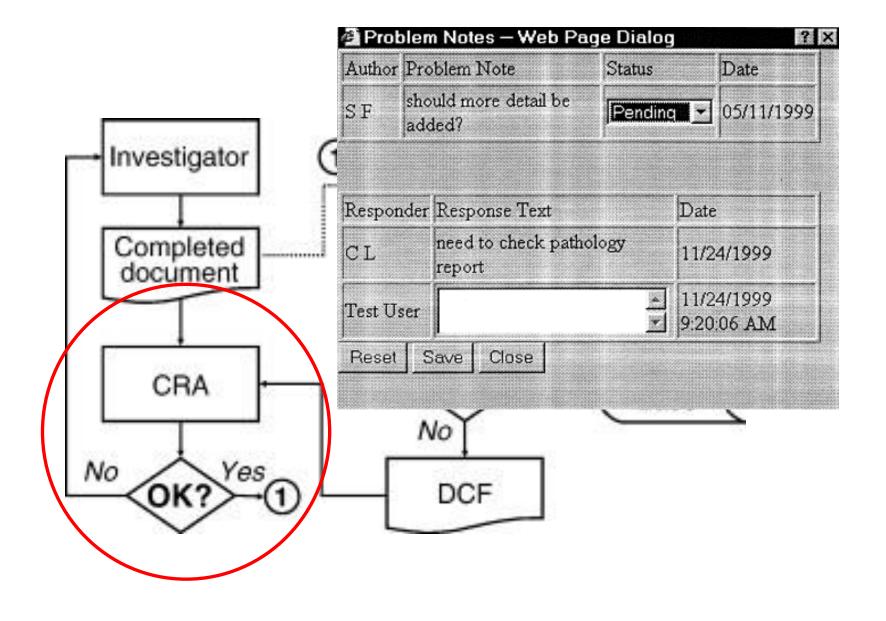
Elizabeth Loder, MD, MPH
Clinical Epidemiology Editor, *BMJ*Associate Professor of Neurology
Harvard Medical School

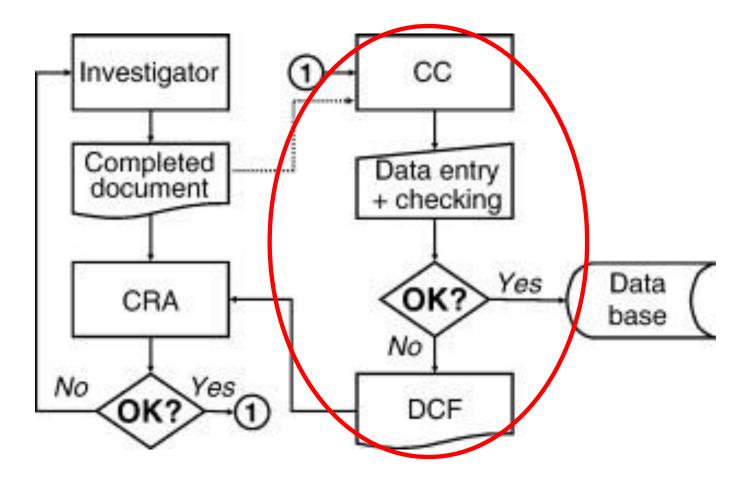
What I aim to cover


What is it we are thinking of sharing?
Why should we share?
What are the benefits?

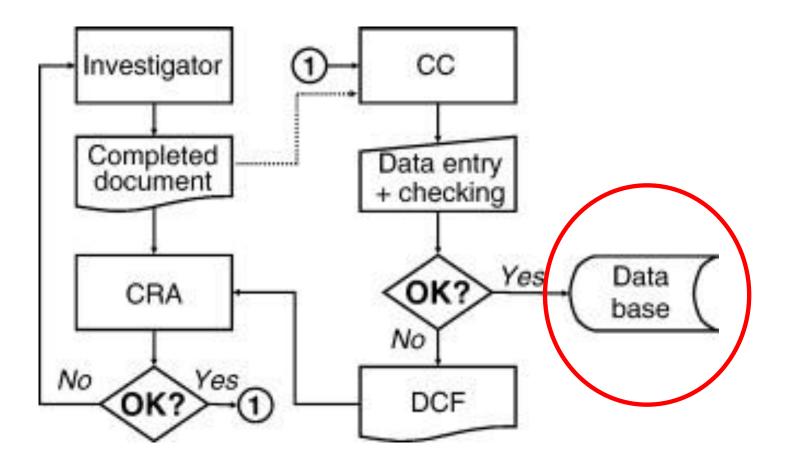
What is it we are thinking of sharing?


"Participant level data" "Raw data"

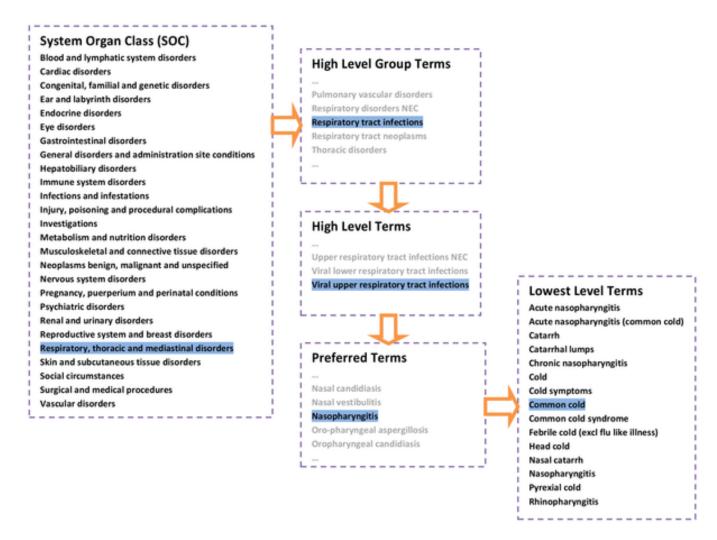



Kirwan B. Quality management of a large, double-blind, multicenter clinical trial: the ACTION experience. Contemporary Clinical Trials 2008/29(2):259-269.

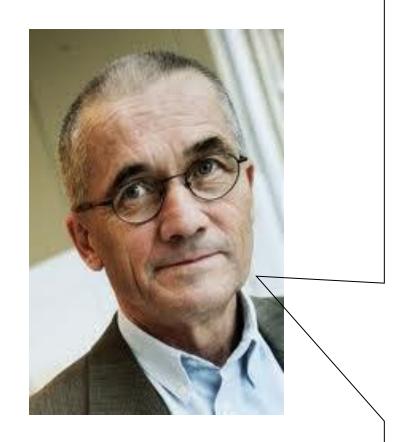
Kirwan B. Quality management of a large, double-blind, multicenter clinical trial: the ACTION experience. Contemporary Clinical Trials 2008/29(2):259-269.



Kirwan B. Quality management of a large, double-blind, multicenter clinical trial: the ACTION experience. Contemporary Clinical Trials 2008/29(2):259-269.


Data flow in the ACTION trial. All investigator-completed documents except Serious Adverse Event (SAE) reports and notification forms were first verified on-site by Clinical Research Associate (CRA). Documents were sent to the Coordinating Centre (CC) for data processing. A Data Clarification Form (DCF) was generated if necessary. SAE reports and notification forms were sent by telefax directly to the CC (dotted arrow).

Kirwan B. Quality management of a large, double-blind, multicenter clinical trial: the ACTION experience.



Data flow in the ACTION trial. All investigator-completed documents except Serious Adverse Event (SAE) reports and notification forms were first verified on-site by Clinical Research Associate (CRA). Documents were sent to the Coordinating Centre (CC) for data processing. A Data Clarification Form (DCF) was generated if necessary. SAE reports and notification forms were sent by telefax directly to the CC (dotted arrow).

Challenges in Coding Adverse Events

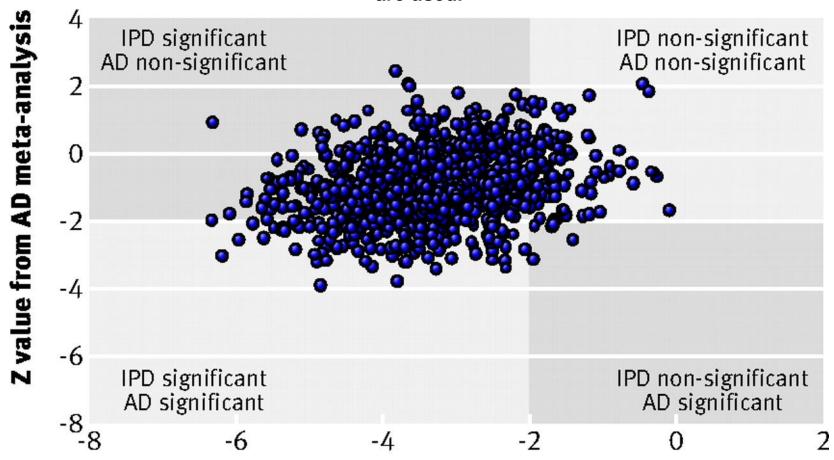
The MedDRA 5-level hierarchy demonstrated by using 'common cold' as an example

"Raw data about adverse events should mean the original descriptions, exactly as reported narratively by patients or researchers on the case report forms, before any coding or adjudication has taken place for categorization purposes."

Gotzsche P. Why we need easy access to all data from all clinical trials and how to accomplish it. Trials 2011, 12:249 doi:10.1186/1745-6215-12-249

What is it we are thinking of sharing?

"...all data from all randomized clinical trials, including raw anonymized individual participant data that do not allow identification of individual participants, and the corresponding trial protocols to become publicly available free of charge and in easily accessible electronic formats..."

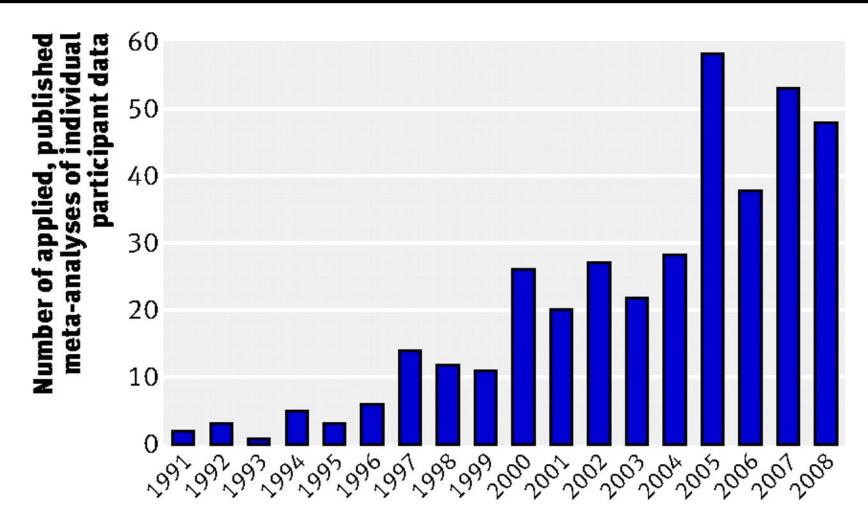


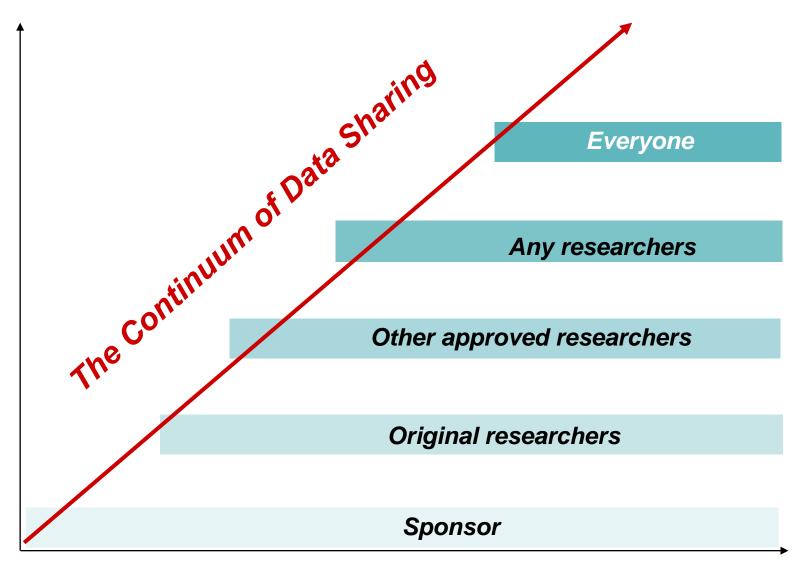
Example of individual participant data from 10 hypertension trials that assess effect of treatment versus placebo on systolic blood pressure

Study ID	Patient ID	Age (years)	Sex (1=male, 0=female)	Treatment group (1=treatment, 0=control)	Systolic blood pressure before treatment (mm Hg)	Systolic blood pressure after treatment (mm Hg)
1	1	46	1	1	137	111
1	2	35	1	0	143	133
		•••				
1	1520	62	0	0	209	219
2	1	55	0	1	170	155
2	2	38	1	1	144	139
2	368	44	1	0	153	129
3	1	51	1	1	186	166
3	2	39	0	1	201	144
3	671	54	0	0	166	141
10	1	71	0	1	149	128
10	2	59	1	0	168	169
10	978	63	0	1	174	128

Dotted line indicates where non-displayed rows of data occur. Hypothetical data based on Wang et al.²⁷

Fig 2 Comparison of the power of meta-analyses to detect a differential treatment effect across two groups of patients when individual participant data (IPD) or aggregate data (AD) are used.

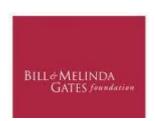



Z value from IPD meta-analysis

Riley R D et al. BMJ 2010;340:bmj.c221

Fig 1 Number of distinct, applied meta-analyses of individual participant data published up to March 2009, as identified by a systematic review of Medline, Embase, and the Cochrane Library.

Inclusiveness


Phrases that resonate throughout their statements

- Research is a public good
- Restoration of trust
- Respect for research participants
- Higher quality science
- Faster progress
- Avoid duplication
- Better value for money

Larry Page, the founder of Google, has called on scientists to make more of their research available. "We have to unlock the wealth of scientific knowledge and get it to everyone."

Reasons and Benefits: Main Themes

Ethical and Moral

- To fulfill obligations to research participants
- Minimize known risks and potential harm from unnecessary exposure to previously tested interventions
- Medical research is a public good

Practical and Scientific

- Detect and deter selective or inaccurate reporting of research
- To ensure access to valid information about previously performed trials and avoid duplication
- Accelerate research and enhance collaboration by making knowledge available
- Restore trust in the clinical research enterprise

Very similar to the arguments for trial registration!

Krleza-Jeric K et al. Principles for international registration of protocol information and results from human trials of health related interventions: Ottawa Statement. BMJ 2005:330:956-958.

Obligations to Research Participants

People participate in clinical research at least in part in the expectation that it might benefit others in the future.

"Patients who put themselves at risk to provide these data earn our respect for their participation..."

A Duty to Future Research Participants

Might the adverse effects of TGN1412 have been predicted if unpublished information had been available?

Medical research is a public good

"The development of new therapies is, in the end, a group endeavor: taxpayers support basic research, companies fund trials, academic medical centers provide the space and equipment, and scientists conduct the research."

You Didn't Build That!

Kimmelman J, London A. http://scienceprogress.org/2010/06/clinical-trials-and-the-common-good/

Laparoscopic colorectal surgery Maintaining weight loss in adults In search of beneficial drug reactions Gambling addiction: a patient's journey

MISSING TRIAL DATA Why we need the full picture

y commissioned. We are, however, happy to consider and peer review unsolicited editorials See http://resources.bmj.com/bmj/authors/types-of-article/editorials for more details

Missing clinical trial data

A threat to the integrity of evidence based medicine

rimary Care, University of Oxford, Oxford OX 1 2ET, UK lizabeth Loder clinical epidemiology editor, AM, London WC1H9JR, UK eloder@bmj.com

Clinical medicine involves making decisions under uncertainty. Clinical research aims to experiments on groups of people who consent to run the risks of such trials in the belief that the resulting knowledge will benefit others. Most clinicians assume that the complex regulatory vstems that govern human research ensure that this knowledge is relevant, reliable, and properly disseminated it generally comes as a shock to clinicians, and certainly to the public, to learn that this is far from the case.

The linked cluster of papers on unpublished evidence should reinforce this sense of shock. proportion of evidence from human trials is unreported, and much of what is reported is done so inadequately. We are not dealing here with trial design, hidden bias, or problems of data analysis-we are talking simply about the absence of the data. And this is no academic matter, because missing data about harm in trials can harm patients, and incomplete data about benefit can lead to futile costs to health deliberately conceal trial results have breached their ethical duty to trial participants

The linked articles look closely at the extent, causes, and consequences of unpublished evidence from clinical trials. Hart and colleagues incorporated unpublished evidence into existing meta-analyses of nine drugs approved by the US Food and Drug Administration in 2001 and 2002.1 These reanalyses produced identical estimates of drug efficacy in just three of 41 more (19/41) and less (19/41). It is sometimes

can harm patients, and incomplete data about benefit can lead to futile costs to health systems

describes in the Research Methods and Reporting section, prior registration of all trials became a condition for later publication.3 Chan details the ways in which authors of systematic reviews can search for unpublished evidence, and he strikes an optimistic note when he states that "Key stakeholders-including medical journal editors, legislators, and funding agencies-pro-

However, two studies we publish give little

Act of 2007 made publication of a results summary on ClinicalTrials.gov within 12 months mandatory for all eligible trials in the US "initiated or ongoing as of September 2007"-Prayle and colleagues examine the extent to which this has happened. The tally stands at 22%. When the word "mandatory" turns out to mandate so little, the need for stronger mechanisms of enforcement becomes very clear.

Most clinical interventions in current use however, are based on trials carried out before the era of mandatory registration, and here the task of data retrieval by systematic reviewers and national advisory bodies becomes impossible Wieseler and colleagues show that the different documents available to researchers and regulators-internally produced study reports, study findings published in peer reviewed journals and results posted in results registries-sup is highest in study reports. However, the effort required to find and collate these sources can be productous and seldom guarantees complete ness.5 In their just published Cochrane review update on antiviral treatments for influenza lefferson and colleagues describe a painstaking search for information from undisclosed trials stretching over several years.

There is an "Alice in Wonderland" feel to these investigators' efforts-acting on the pub ltc's behalf, searching over hill and dale and among the paperwork of regulatory bodies and drug companies to put together pieces of data that should have been freely available in the first place. Even when data on individual participants are made available, they form only part of the tigsaw, and Ahmed and colleagues describe the problems of fitting in such data when the

Finally, to find the randomised clinical trials that have been published in the medical litera assumed that incorporation of missing data will cause for optimism that this adherence extends ture, nearly every student, clinician, or researcher reduce estimates of drug benefits, but this study to timely sharing of trial results. A survey of turns first to Medline among the biomedical

"This may require the global organisation of a suitable shared database for all raw data from human trials...Concealment of data should be regarded as the serious ethical breach that it is, and clinical researchers who fail to disclose data should be subject to disciplinary action by professional organisations. This may achieve quicker results than legislation in individual countries, although this is also desirable."

Effect of reporting bias on meta-analyses of drug trials: reanalysis of meta-analyses

Beth Hart, 1 Andreas Lundh, 2 Lisa Bero1

EDITORIAL by Lehman and Loder

¹Department of Clinical Pharmacy, Institute for Health Policy Studies, University of California, San Francisco, 3333 California St, Suite 420, San Francisco, CA 94118, USA

²Nordic Cochrane Centre, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark

Correspondence to: L Bero berol@pharmacy.ucsf.edu

Cite this as: *BMJ* 2012;344:d7202 doi: 10.1136/bmj.d7202

This is a summary of a paper that was published on bmj.com as *BMJ* 2011;343:d7202

STUDY QUESTION

What effect does inclusion of unpublished trial outcome data obtained from the Food and Drug Administration (FDA) have on the results of meta-analyses of drug trials?

SUMMARY ANSWER

In general, the effect of including unpublished FDA trial outcome data varies by drug and outcome.

WHAT IS KNOWN AND WHAT THIS PAPER ADDS

When unfavourable results of drug trials are not published, meta-analyses and systematic reviews that are based on only published data may overestimate the efficacy of drugs. Addition of unpublished trial outcome data to published meta-analyses changed their results; the direction of the effect varied by drug and outcome.

Selection criteria for systematic reviews

We identified eligible systematic reviews containing at

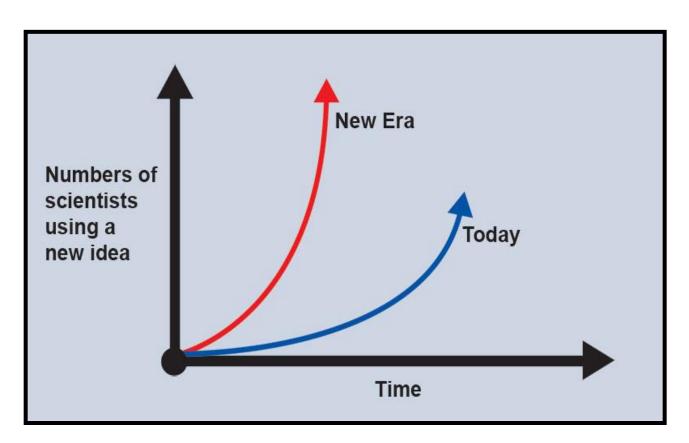
analysis by searching Medline, Embase, ane Library in November 2010. We natic reviews that were done after FDA 3s with unpublished FDA outcome data, in English, had outcomes and comparae same as for the trials with unpublished had participants' characteristics consist-A approved indications for the drug. We natic reviews in which included trials ced or that combined trials across mul-

tiple drug classes. We also excluded systematic reviews that used non-standard meta-analytic techniques (such as Bayesian or network meta-analyses) or that used inappropriate or invalid methods for calculation of summary statistics (such as unweighted pooled analyses).

Primary outcome(s)

The main outcome was the effect of including unpublished FDA trial data on the summary estimates of metaanalyses of drug trials.

Main results and role of chance

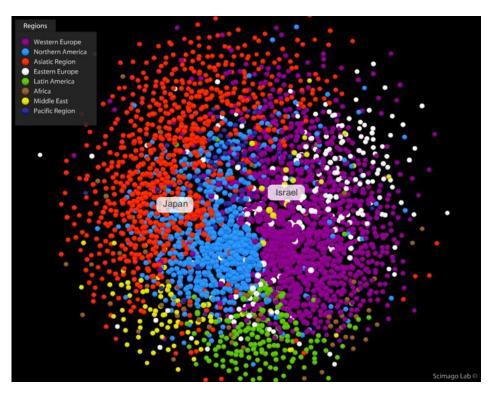

We reanalysed 42 meta-analyses (41 efficacy outcomes, one harm outcome) for nine drugs across six drug classes. Overall, addition of unpublished FDA trial data caused 46% (19/41) of the summary estimates from the meta-analyses to show less efficacy of the drug (range 1-53% change in summary estimate), 7% (3/41) to show identical drug efficacy, and 46% (19/41) to show greater drug efficacy (2-166% change in summary estimate).

Bias, confounding, and other reasons for caution

We were able to identify systematic reviews for only nine of the 24 drugs for which unpublished FDA trial outcome data were available. One reason for the lack of relevant systematic reviews may be that reviewers are unaware of unpublished outcomes and so do not include these outcomes in their protocols. Therefore, selective reporting of FDA trial outcomes could affect systematic reviews by influencing the research questions that are asked, as well

Addition of unpublished FDA trial data caused 46% of the summary estimates from the meta-analyses to show lower efficacy of the drug, 7% to show identical efficacy, and 46% to show greater efficacy.

Accelerate research



Compressing decades to years, years to months, and months to days

Spence K. USDOE OSTI. Presentation at Fesabid 2007, the 10th Spanish Conference on Documentation June 12–13, 2007

Collaboration and cooperation among scientists

http://olihb.com/2011/01/23/map-of-scientific-collaboration-between-researchers/ and http://www.scimagolab.com/blog/2011/institutional-collaboration-in-global-science/

Benefits: Citizen Science

"The next Beethoven Pasteur will from Colorado Maryland come..."

The Maryland native, who won \$75,000 at the Intel International Science and Engineering Fair in May for his creation, cites search engines and free online science papers as the tools that allowed him to create the test...."

Benefits of Sharing: Restore trust in the clinical research enterprise

"The clinical research enterprise faces its greatest crisis ever: widespread distrust. Without public and patient support, there can be no translation of innovations into medical therapies. In the absence of study volunteers, clinical trials cannot be conducted and, ultimately, public health advances cannot be realized. An alarmingly low 4 to 6% of ELIGIBLE patients participate in US-based clinical trials annually."

Medical heroes can be found in everyday places

Situations is clinical research and the larges in the discourse of one medical implements. In least described phones repeated and some many, any silent 1 and 1000 miles. Regulater we use during a difference.

Benefits of Sharing: Restore trust in the clinical research enterprise

A Randomized Study of How Physicians Interpret Research Funding Disclosures

Aaron S. Kesselheim, M.D., J.D., M.P.H., Christopher T. Robertson, Ph.D., J.D., Jessica A. Myers, Ph.D., Susannah L. Rose, Ph.D., Victoria Gillet, B.A., Kathryn M. Ross, M.B.E., Robert J. Glynn, Ph.D., Steven Joffe, M.D.,

CONCLUSIONS

Physicians discriminate among trials of varying degrees of rigor, but industry sponsorship negatively influences their perception of methodologic quality and reduces their willingness to believe and act on trial findings, independently of the trial's quality. These effects may influence the translation of clinical research into practice.

Submit Data Now!

See how to

My Account

submit

Login or Register

Browse

Authors Journal Title

Information

Depositing Data Using Data Dryad Partners

Journal Archiving Policy

About Dryad Dryad Blog

Dryad Documentation

Data from: Efficacy and safety of four weeks' treatment with combined fluticasone furoate/vilanterol in a single inhaler given once daily in COPD: a placebo-controlled randomised trial

When using this data, please cite the original article

Lötvall J, Bakke PS, Bjermer L, Steinshamn S, Scott-Wilson C, Crim C, Sanford L, Haumann B (2012) Efficacy and safety of four weeks' treatment with combined fluticasone furoate/vilanterol in a single inhaler given once daily in COPD: a placebo-controlled randomised trial. BMJ Open 2(1): e000370. doi:10.1136/bmjopen-2011-000370

Additionally, please cite the Dryad data package:

Lötvall J, Bakke PS, Bjermer L, Steinshamn S, Scott-Wilson C, Crim C, Sanford L, Haumann B (2012) Data from: Efficacy and safety of four weeks' treatment with combined fluticasone furoate/vilanterol in a single inhaler given once daily in COPD: a placebo-controlled randomised trial. Dryad Digital Repository. doi:10.5061/dryad.7p1r30q5

Cite I Share

Search Data

Dryad Package Identifier

doi:10.5061/dryad.7p1r30q5 97 views

Abstract

BACKGROUND: Fluticasone furoate/vilanterol (FF/VI) is a nov corticosteroid/long-acting β2 agonist combination in development pulmonary disease (COPD) and asthma. TRIAL DESIGN: A m double-blind, parallel-group, placebo-controlled study. METHO patients with moderate-to-severe COPD treated with placebo of weeks. Study objectives were to assess the safety and efficac administered for 4 weeks via a novel dry powder inhaler. Co-pri change from baseline in weighted mean (wm) heart rate 0-4 h incidence of adverse events (AEs). Secondary end points inclu trough forced expiratory volume in one second (FEV1) (23-24 FEV1 (0-4 h postdose; day 28). Patients were randomised to placebo in a 2:1 ratio; all patients and investigators were blind treatment, RESULTS: 60 patients (mean age 64 years) were in placebo: n=20), and all contributed data to the analysis. Mean bronchodilator FEV1 per cent predicted was comparable betw placebo: 60.1%). The wm heart rate 0-4 h postdose was simil (difference: 0.6 beats per minute; 95% CI -3.9 to 5.1). More of reported in the FF/VI group (68%) compared with the placebo common drug-related AEs in the FF/VI group were oral candid (5%). There were no clinically relevant effects on laboratory va potassium, or on vital signs or ECGs/Holters. The FF/VI group improvements compared with placebo in trough FEV1 (mean postdose wm FEV1 (mean difference 236 ml), CONCLUSION: tolerability profile and improves lung function compared with pl

Keywords

Chronic airways disease, RESPIRATORY MEDICINE, THORA

Date Deposited

2012-01-26T16:43:37Z

Show Full Metadata

FF-VI_348_study_Dryad-DATA 19 downloads View File Details

Download: FF-VI 348 study Dryad-DATA.pdf (153.0Kb)

Open Access

Efficacy and safety of 4 weeks' treatment with combined fluticasone furoate/ vilanterol in a single inhaler given once daily in COPD: a placebo-controlled randomised trial

J Lötvall, 1 P S Bakke, 2 L Bjermer, 3 S Steinshamn, 4,5 C Scott-Wilson, 6 C Crim, 6 L Sanford. B Haumann 7

To cite: Lötvall J. Bakke PS. Bjermer L, et al. Efficacy and safety of 4 weeks' treatment with combined fluticasone furoate/vilanterol in a single inhaler given once daily in COPD: a placebo-controlled randomised trial. BMJ Open 2012;2:e000370. doi:10.

Prepublication history for this paper is available online. To view these files please visit the journal online (http:// bmjopen.bmj.com).

1136/bmjopen-2011-000370

Received 31 August 2011 Accepted 9 December 2011

ABSTRACT

Background: Fluticasone furoate/vilanterol (FF/VI) is a novel once-daily (OD) inhaled corticosteroid/longacting β_2 agonist combination in development for chronic obstructive pulmonary disease (COPD) and

Trial design: A multicentre, randomised, double-

baseline in weighted mean (wm) heart rate 0-4 h postdose at day 28 and the incidence of adverse

events (AEs). Secondary end points included change

from baseline in trough forced expiratory volume in

one second (FEV1) (23-24 h postdose; day 29) and

randomised to receive FF/VI 400/25 µg or placebo in

a 2:1 ratio; all patients and investigators were blinded

wm FEV1 (0-4 h postdose; day 28). Patients were

blind, parallel-group, placebo-controlled study. Methods: Participants were patients with moderate-tosevere COPD treated with placebo or FF/VI 400/25 µg OD for 4 weeks. Study objectives were to assess the safety and efficacy of FF/VI 400/25 µg OD administered for 4 weeks via a novel dry powder inhaler. Co-primary end points were change from

to active or placeho treatment

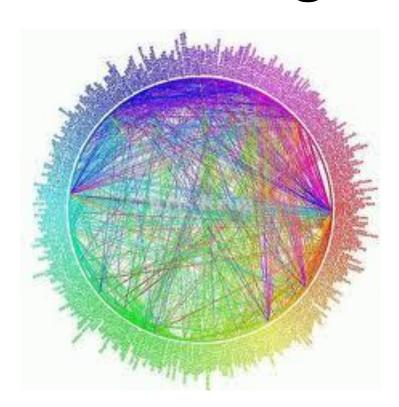
This final article is available for use under the terms of the Creative Commons Attribution Non-Commercial 2.0 Licence; see

ARTICLE SUMMARY

Article focus

Is the once-daily inhaled corticosteroid/longacting B2 agonist (ICS/LABA) combination FF/VI efficacious with a favourable safety and tolerability profile in COPD?

Research


Key messages

 In patients with moderate-to-severe COPD, FF/VI 400/25 µg once daily improved lung function. AEs frequently experienced with other ICS/LABA combinations were generally reported at similar frequencies in the placebo and active treatment arms.

Strengths and limitations of this study

 This paper is the first to present clinical data on inhaled FF/VI combination therapy in patients with chronic obstructive lung disease. Given the 4-week duration of this study, there was no end point or surrogate marker to specifically address the relative clinical effects of FF in COPD (such as

We are engaged in one of the great struggles of human knowledge

Thanks!

twitter@eloder

eloder@bmj.com

