

A case report in genomic medicine

Euan Ashley MRCP, DPhil, FACC, FAHA
Chief Futurist
Director, Center for Inherited Cardiovascular Disease
Stanford University School of Medicine

Disclosures

Founder, equity owner and consultant: Personalis Inc

Futurist ABCDEFGHIJKLMN OPQRSTUVWXYZ abcdefghijklmn opqrstuvwxyz 1234567890 !@#\$%^&*()

"I think there is a world market for maybe five computers."

Thomas Watson, chairman of IBM, 1943

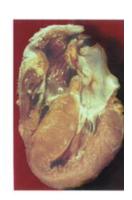
"The concept is interesting and wellformed, but in order to earn better than a 'C,' the idea must be feasible."

A Yale University management professor in response to Fred Smith's paper proposing reliable overnight delivery service. (Smith went on to found Federal Express Corp.)

"We don't like their sound, and guitar music is on the way out"

Decca Recording Co. rejecting the Beatles, 1962.

What if everybody's genome was available in their medical record?



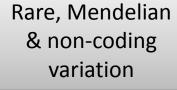
Parsing 6,000,000 data points

When one base pair change can turn this

into this

The Stanford Genome Interpretation team

Technology & Structural variation


Mike Snyder

Carlos Bustamante

Sequence, assembly & error

Common variation

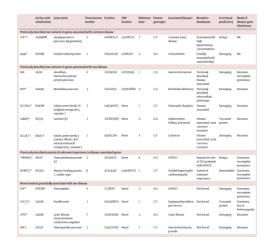
Pharmacogenomic variation

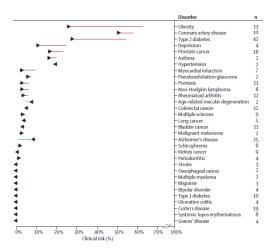
Ethics & Consent

Steve Quake

Euan Ashley

Atul Butte


Russ Altman


Hank Greely

Clinical assessment incorporating a personal genome

Euan A Ashley, Atul J Butte, Matthew T Wheeler, Rong Chen, Teri E Klein, Frederick E Dewey, Joel T Dudley, Kelly E Ormond, Aleksandra Pavlovic, Alexander A Morgan, Dmitry Pushkarev, Norma F Neff, Louanne Hudgins, Li Gong, Laura M Hodges, Dorit S Berlin, Caroline F Thorn, Katrin Sangkuhl, Joan M Hebert, Mark Woon, Hersh Sagreiya, Ryan Whaley, Joshua W Knowles, Michael F Chou, Joseph V Thakuria, Abraham M Rosenbaum, Alexander Wait Zaranek, George M Church, Henry T Greely, Stephen R Quake, Russ B Altman

WSLcom

HEALTH INDUSTRY

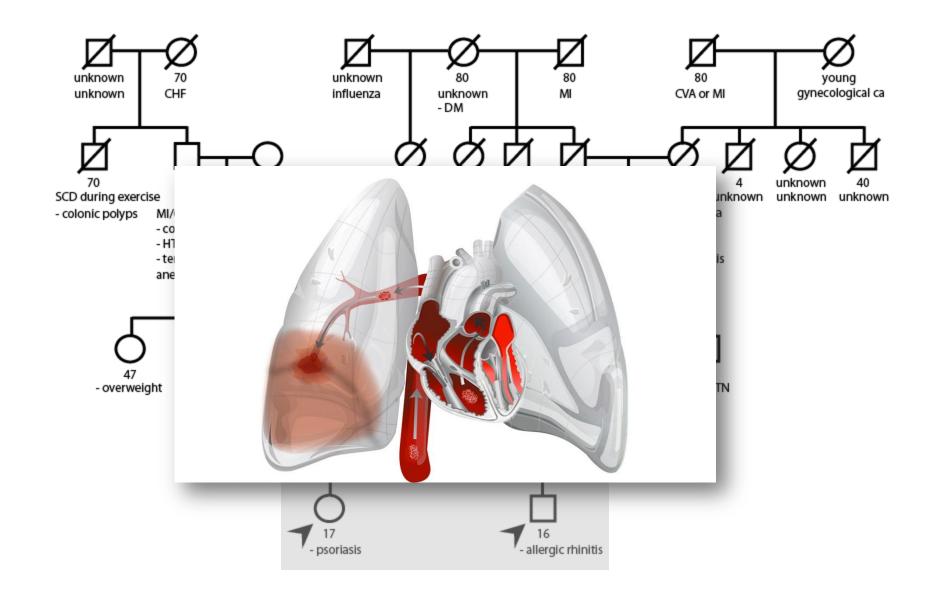
SEPTEMBER 16, 2011

Family Pioneers in Exploration of the Genome

By AMY DOCKSER MARCUS

A group of researchers said that by examining the whole genome of a family of four, they were able to make unusually specific findings, including the daughter's risk of blood clots, and suggestions for preventive care.

Channing Johnson for The Wall Street Journal Wellesley College freshman Anne West.



The study, published Thursday in the journal PLoS Genetics, was led by researchers at Stanford University School of Medicine in Palo Alto, Calif., but also listed as co-authors John and Anne West, a father and daughter who were researching their own genetic make-up at home in Silicon Valley and met the Stanford team in the process. The research is part of scientists' continuing quest to extract truly useful information from the genome, a person's complete genetic code.

This is the second time a paper has been published about a family's whole genome. In the earlier paper, published last year in Science Express by a different group of researchers, the two children in the family had rare genetic conditions, and researchers were searching for the genes that caused them. The goal in the current study was to better predict the disease risk of a family and how family members might respond to medications.

Many people have turned to genetics companies like 23andme that offer information on specific traits for under \$400. But genome sequencing of the six billion letters of a person's genetic code has been prohibitively expensive. Now, the price of the technology is rapidly plummeting. Illumina, which charged \$48,000 to do individual genomes in 2009, now charges \$9,500, or less for patients with life-threatening diseases.

But extracting useful clinical information from the data is still challenging. For one thing, "at this point, we are still not sure exactly what most genes predict about disease," said Lynn Jorde of the University of Utah School of Medicine, a co-author of the earlier family paper.

The problem(s) with short reads

```
...ACGTTTAACGT... ...GCGTTGCCT...

...TTACGCCGCG...

...AGTCCCGGGAT... ...ATGTAGCCTGT...

alignment to reference genome

...TTTAACGT...

...CGTTTATC...

...ATCGTCCC...

short reads

...ATCGTCCC...

...ACGTTTAACGT...

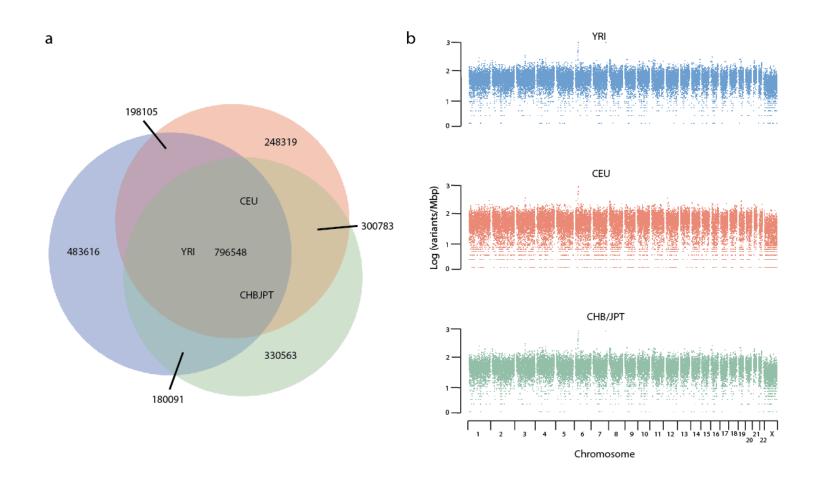
...ACGTTTAACGT...

...ACGTTTAACGT....

...ACGTTTAACGT....

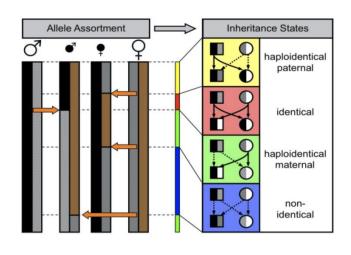
reference sequence
```

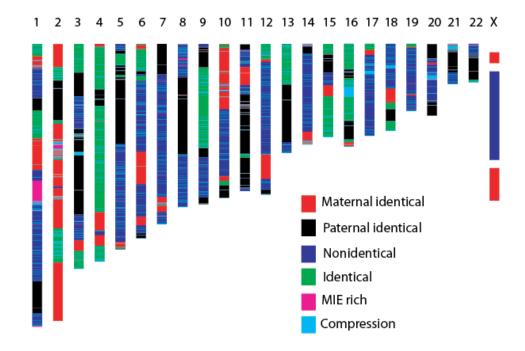

The human reference sequence



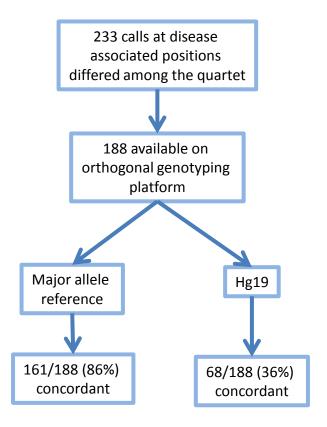
The human reference sequence contains highly validated risk alleles

Disease/trait	dbSNP	symbol	Туре	Risk	P value	Odds Ratio	Pop
Blood pressure	653178	ATXN2	intron	С	3.00E-18		ALL, CHB/JPT, YRI
Celiac disease	653178	ATXN2	intron	С	7.15E-21	1.20	ALL, CHB/JPT, YRI
Celiac disease	3184504	SH2B3	missense	Т	1.23E-12	1.21	ALL, CHB/JPT, YRI
Coronary artery disease	3184504	SH2B3	missense	Т	4.23E-11	1.14	CHB/JPT, YRI
End-Stage renal disease	2032487	МҮН9	intron	С	1.98E-15	2.61	СНВ/ЈРТ
End-Stage renal disease	4821480	МҮН9	intron	G	8.48E-17	2.29	СНВ/ЈРТ
End-Stage renal disease	4821481	МҮН9	intron	С	2.28E-16	2.62	CHB/JPT
End-Stage renal disease	5756152	МҮН9	intron	Α	5.84E-11	2.82	ALL, CHB/JPT
Focal segmental glomerulosclerosis	4821481	МҮН9	intron	С	1.28E-09		CHB/JPT
Ige levels	1295685	IL13	UTR-3	Α	2.00E-07	1.61	YRI
Rheumatoid arthritis	1217413		intergenic	G	4.00E-08	1.38	YRI
Rheumatoid arthritis	2476601	PTPN22	missense	Α	2.30E-98	1.96	ALL, CHB/JPT, YRI
Systemic lupus erythematosus	2476601	PTPN22	missense	Α	3.4E-12	1.57	ALL, CHB/JPT, YRI
Type 1 diabetes	2476601	PTPN22	missense	Α	2.11E-87	2.25	ALL, CHB/JPT, YRI
Type 1 diabetes	3184504	SH2B3	missense	Т	5.62E-31	1.24	ALL, CHB/JPT, YRI
Type 2 diabetes	5219	KCNJ11	missense	Т	6.7E-11	1.26	YRI
Type 2 diabetes	2970847	PPARGC1A	cds-synon	Т	1.59e-18	2.10	YRI
Vitiligo	2476601	PTPN22	missense	Α	6.79E-09	1.82	ALL, CHB/JPT, YRI




Creating synthetic reference sequences

Family based care: inheritance state analysis



Towards a medical grade genome - reducing error

- HMM is a powerful tool
- For novel reference, greatest where it matters most
 - Some improvement in alignment
 - Significant improvement in MIE
 - Significant improvement in variant calling
- New approaches
 - NHLBI Exome upgrade
 - Null
 - indels
 - Alternate allele aware assembly
 - Lookup vs 'aware'

Inheritance of potential risk alleles for thrombophilia

Chromosome	Gene	rsid	Affected family members	Disease	Inheritance	Onset- earliest		Severity	Actionability	Lifetime risk	Variant pathogenicity
12	VWF	rs61750615	M, S, D	Von Willebrand disease	Incomplete dominant	1	1	5	5	variable	7
10	HABP2	rs7080536	M, S, D	Carotid stenosis, thrombophilia	AD	4	4	1	5	variable	7
19	SLC7A9	rs79389353	M, D	Cysteinuria – kidney stones	AR	1	1	3	5	7	7
1	F5	rs6025	F, D	Thrombophilia	Incomplete dominant	4	4	4	5	2	7
1	MTHFR	rs1801133	F, D	Hyperhomocystein- emia	AR	1	1	1	6	2	7

Key: Father, mother, son, daughter = F, M, S, D. Abbreviations: AD, autosomal dominant; AR, autosomal recessive. Variants were scored according to disease phenotype features and variant pathogenicty as outlined in Table S4. doi:10.1371/journal.pgen.1002280.t002

Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence

Frederick E. Dewey¹, Rong Chen², Sergio P. Cordero³, Kelly E. Ormond^{4,5}, Colleen Caleshu¹, Konrad J. Karczewski^{3,4}, Michelle Whirl-Carrillo⁴, Matthew T. Wheeler¹, Joel T. Dudley^{2,3}, Jake K. Byrnes⁴, Omar E. Cornejo⁴, Joshua W. Knowles¹, Mark Woon⁴, Katrin Sangkuhl⁴, Li Gong⁴, Caroline F. Thorn⁴, Joan M. Hebert⁴, Emidio Capriotti⁴, Sean P. David⁴, Aleksandra Pavlovic¹, Anne West⁶, Joseph V. Thakuria⁷, Madeleine P. Ball⁸, Alexander W. Zaranek⁸, Heidi L. Rehm⁹, George M. Church⁸, John S. West¹⁰, Carlos D. Bustamante⁴, Michael Snyder⁴, Russ B. Altman^{4,11}, Teri E. Klein⁴, Atul J. Butte², Euan A. Ashley¹*

SNP Location	Drug(s)	Drug(s) More Likely to Work	Drug(s) Less Likely to Work	Drug(s) More Likely to Cause Side Effect	Drug(s) Less Likely to Cause Side Effect	Drug Dose(s) Above Average	Drug Dose(s) Below Average	Drug Dose(s) Average	No PGx Action/ Phenotype Unknown	Confidence Level
rs9934438	warfarin							■0■0		High
rs1954787	citalopram	■00	•							High
rs776746	cyclosporine			•			EOE O			High
rs1800460	thiopurines									High
rs2108622	warfarin						EOE O			Medium
rs4680	morphine					EOE O				Medium
rs5443	statins	= 0	= 0							Medium
rs4253778	beta blocking agents	0	= 0							Medium
rs622342	metformin	0=	= 0	•	•		•			Medium
rs7569963	citalopram			•	•				00	Medium
rs8012552	ACE inhibitors				EO EO		•			Low
rs11209716	ACE inhibitors				■■○		•		0	Low
Key: Father, Mother, Brother, Sister =	■○■○									

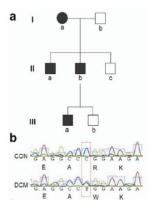
All family members are homozygous for the most common CYP2C9 allele (CYP2C9*1) associated with normal warfarin pharmacokinetics, and heterozygous for the allele at VKORC1- 1639 (rs9923231) associated with therapeutic prolongation of the international normalized ratio at low doses of warfarin. We used this variant data and clinical data to predict the father's exact empirically-determined dose of warfarin (5 mg) using the International Warfarin Pharmacogenetics Consortium dosing algorithm.

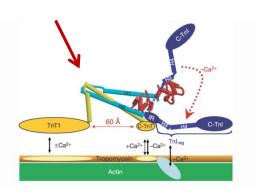
The genome has arrived

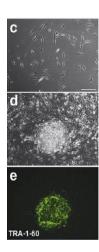


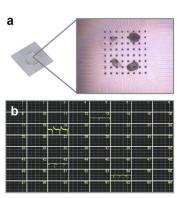
DISEASE

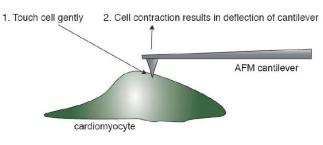
Funding NIH DP2 OD004613 NIH R01 HL105993 NIH UL1RR029890 NIH HL094274 (T32) Breetwor Foundation Baxter Foundation


Conclusion

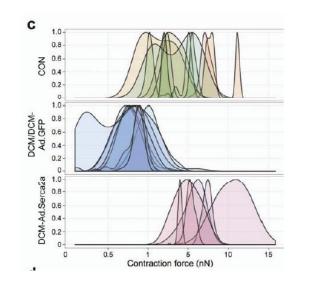

- In the future, we will not be limited by the availability of genetic information
- We need to decide how to use this information for the improvement of our patients lives

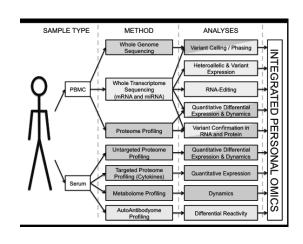

Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy

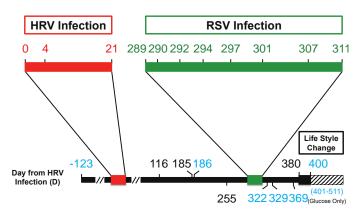

Ning Sun,^{1,2,3}* Masayuki Yazawa,⁴* Jianwei Liu,⁵ Leng Han,^{1,2} Veronica Sanchez-Freire,^{1,2} Oscar J. Abilez,⁶ Enrique G. Navarrete,² Shijun Hu,^{1,2} Li Wang,^{1,2,3} Andrew Lee,^{1,2,3} Aleksandra Pavlovic,¹ Shin Lin,¹ Rui Chen,⁷ Roger J. Hajjar,⁸ Michael P. Snyder,⁷ Ricardo E. Dolmetsch,⁴ Manish J. Butte,⁵ Euan A. Ashley,¹ Michael T. Longaker,^{3,9} Robert C. Robbins,¹⁰ Joseph C. Wu^{1,2,3,10†}

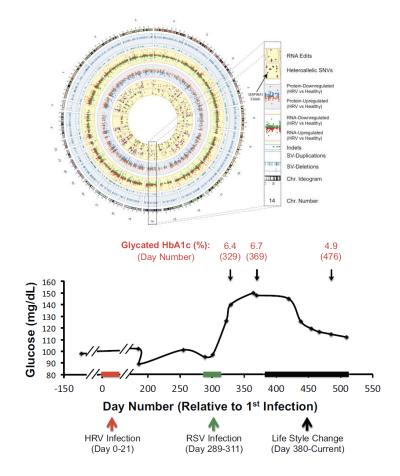


Troponin T (R173W)




Force = deflection x spring constant




Sci Tr Med 2012 4 (130): 1-13 (18th April 2012)

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen, ^{1,11} George I. Mias, ^{1,11} Jennifer Li-Pook-Than, ^{1,11} Lihua Jiang, ^{1,11} Hugo Y.K. Lam, ^{1,12} Rong Chen, ^{2,12} Elana Miriami, ¹ Konrad J. Karczewski, ¹ Manoj Hariharan, ¹ Frederick E. Dewey, ³ Yong Cheng, ¹ Michael J. Clark, ¹ Hogune Im, ¹ Lukas Habegger, ^{6,7} Suganthi Balasubramanian, ^{6,7} Maeve O'Huallachain, ¹ Joel T. Dudley, ² Sara Hillenmeyer, ¹ Rajini Haraksingh, ¹ Donald Sharon, ¹ Ghia Euskirchen, ¹ Phil Lacroute, ¹ Keith Bettinger, ¹ Alan P. Boyle, ¹ Maya Kasowski, ¹ Fabian Grubert, ¹ Scott Seki, ² Marco Garcia, ² Michelle Whirl-Carrillo, ¹ Mercedes Gallardo, ^{9,10} Maria A. Blasco, ³ Peter L. Greenberg, ⁴ Phyllis Snyder, ¹ Teri E. Klein, ¹ Russ B. Altman, ^{1,5} Atul J. Butte, ² Euan A. Ashley, ³ Mark Gerstein, ^{6,7,8} Kari C. Nadeau, ² Hua Tang, ¹ and Michael Snyder^{1,*}

