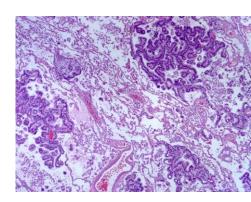
Assessing the Economics of Genomic Medicine

Kenneth Offit, MD MPH
Chief, Clinical Genetics Service
Memorial Sloan-Kettering Cancer Center

•DISCLOSURES

- ·No conflicts
- Patentsunenforced
- Consultancies unpaid
- ·ASCO volunteer
- •Government advisory Committees (EGAPP, NCI BSC)

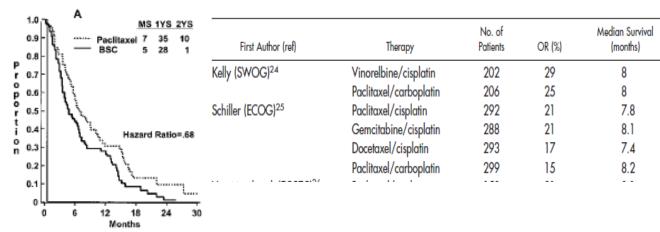


© Leo Cullum/The New Yorker Collection/www.cartoonbank.com

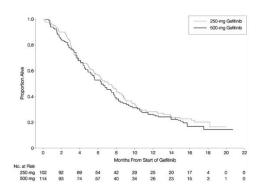
Scenario

 The individual presents at age 50 with cough, dyspnea, and chest discomfort. Evaluation reveals a lung mass; bronchoscopy and biopsy reveals advanced non-small cell lung cancer. Her tumor is found to have variations that allow the use of targeted therapy and with treatment the patient goes into remission, followed by relapse, further testing and treatment.

Cancer Clinical Scenario Conclusions


- Model 1 (targeted mutation testing):
 - Current Practice
 - Resistance
 - Companion Diagnostics
- Model 2 (MPS for disease and actionable variants):
 - More genomes in Oncology than anywhere else
 - More germline genomes also, (including PG), not fully exploited
- Model 3 (MPS + incidentaloma with no threshold):
 - Genomes give more information than exomes
 - Full disclosure of "incidentalome" a research question (45 CFR)

Standard chemotherapy (2001)

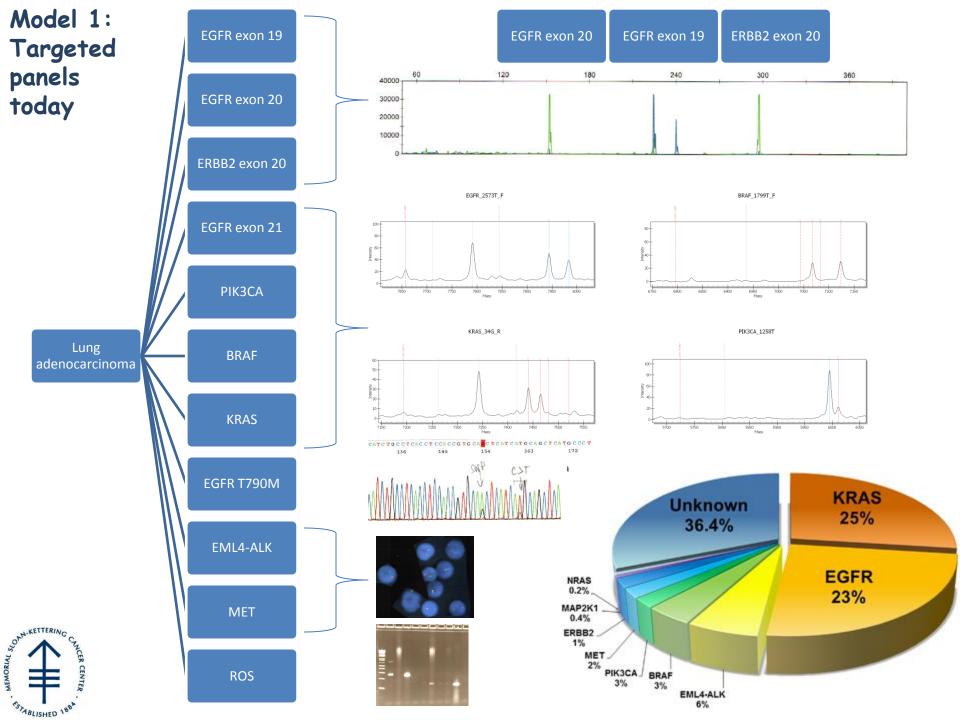

TKI as Second Line chemotherapy (2003)

Targeting of TKI (2004)

Resistance to TKI (2006)

EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib

William Pao*^{†‡}, Vincent Miller^{†§}, Maureen Zakowski[¶], Jennifer Doherty*, Katerina Politi*, Inderpal Sarkaria[†], Bhuvanesh Singh[‡], Robert Heelan[†]*, Valerie Rusch[‡], Lucinda Fulton^{††}, Elaine Mardis^{††}, Doris Kupfer^{††}, Richard Wilson^{††}, Mark Kris^{†§}, and Harold Varmus*


*Program in Cancer Biology and Genetics and Departments of †Medicine, |Surgery, *Pathology, and **Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue. New York. NY 10021: and †*Genome Sequencing Center. Washington University School of Medicine. 4444 Forest Park Boulevard.

75-82% RR PFS 8.9-13.3 mos

Cancer Therapy: Clinical

Novel D761Yand Common Secondary T790M Mutations in Epidermal Growth Factor Receptor – Mutant Lung Adenocarcinomas with Acquired Resistance to Kinase Inhibitors

Marissa N. Balak, ¹Yixuan Gong, ¹Gregory J. Riely, ²Romel Somwar, ³Allan R. Li, ⁴Maureen F. Zakowski, ⁴Anne Chiang, ²Guangli Yang, ⁵Ouathek Ouerfelli, ⁵Mark G. Kris, ^{2,6}Marc Ladanyi, ^{1,4}Vincent A. Miller, ^{2,6} and William Pao^{1,2,6}

Targeted therapies approved or in pre-clinical study for lung cancer

Target	Clinically Approved for Lung Cancer	In Clinical Trials for Lung Cancer	Novel Agents in Preclinical Study	Pathway	Target	Clinically Approved for Lung Cancer	In Clinical Trials for Lung Cancer	Novel Agents in Preclinical Study
EGFR	Erlotinib, cetuximab*	Afatinib (BIBW 2992), BMS-690514, canertinib, CUDC-101, EKB-569, gefitinib , icotinib,	AEE 788, AV-412, BMS-599626	Angiogenesis	VEGF	Bevacizumab	Aflibercept (AVE005), AMG706, cediranib (AZD2171)	
	lapatinib, matuzur neratinib (HKI-27	lapatinib, matuzumab, necitumumab, neratinib (HKI-272), nimotuzumab, panitumumab, pelitinib, PF0299804.		RAS/RAF/ MEK/ERK	RAS		Lonafarnib, tipifarnib	ISIS 2503 (H-ras)
		vandetanib, XL647, zalutumumab			RAF		GSK2118436, regorafenib, sorafenib	AZ628, ISIS 5132, XL281 (BMS-908662)
VEGFR		Axitinib, BMS-690514, brivanib alaninate (BMS-582664), cediranib, E7080, foretinib, linifanib, motesanib (AMG-706), neovastat	Adnectin, AEE 788, TKI-258, TSU-68		MEK		GSK1120212, PD325901, selumetinib (AZD6244), sorafenib	AS 703026, AZD8330, GDC-0973, RDEA119
		(AE-941), pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, tivozanib, vandetanib,		PI3K/AKT/mTOR	PI3K		BKM120, GDC-0941, PX-866, XL147, XL765	BEZ235, BGT226, LY294002
		vargatef (BIBF 1120), vatalanib, XL184, XL647, XL999			AKT		Nelfinavir, MK-2206, perifosine	
ALK	Crizotinib	Accid (DIDW 2000) DMC (2001)	GSK1838705A, nVP-TAE684		mTOR		Everolimus (RAD001), PX-866, ridaforolimus, sirolimus/rapamycin, temsirolimus (CCI-779)	AZD8055, BEZ235, OSI-027
HER2		Afatinib (BIBW 2992), BMS-690514, CI-1033, CUDC-101, EKB-569, lapatinib,	AEE 788, AV-412, BMS-599626	Apoptosis	IAPs			HGS1029
		PF0299804, neratinib (HKI-272), pertuzumab, trastuzumab, XL647			TRAIL		Conatumumab (AMG 655), dulanermin (AMG 951), mapatumumab	Apomab, lexatumumab
c-MET	Crizotinib	AMG 102, AV-299 (SCH-900105), foretinib, GSK1363089, MetMAb, tivantinib (ARQ197), XL184	AMG 208, PF-04217903, PHA-665752, SGX523, SU11274		BCL2		Gossypol, navitoclax (ABT-263), oblimersen, obatoclax	ABT-737
PDGFR		Axitinib, cediranib, dasatinib (BMS-354825), E7080, imatinib, IMC-3G3, linifanib, motesanib	TKI-258, TSU-68		PARP		Iniparib (SAR240550), veliparbi	AG014699, olaparib FUS1 Fus1 liposome complex
		(AMG-706), pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, vargatef (BIBF 1120), vatalanib, XL999		HSPs	HSP90		Ganetespib (STA-9090), retaspimycin (IPI-504), SNX-5422 (PF04929113), tanespimycin	17-AAG, alvespimycin
IGF-1R		AMG 479, BIIB022, cixutumumab (IMC-A12), figitumumab (CP751,851), MK-0646, OSI906	BMS-754807	HDACs	HDACs		Belinostat, CI-994 (tacedinaline), CUDC-101, entinostat, panobinostat (LBH589), Pivanex, romidepsin, vorinostat	SB939
FGFR		Brivanib alaninate (BMS-582664), E-7080, regorafenib, vargatef (BIBF 1120), XL999	FP-1039, PD-173074, TKI-258, TSU-68	Proteosome	Proteosome		Carfilzomib, bortezomib, salinosporamide A (NPI-0052)	CEP-18770, MLN9708
c-KIT		Axitinib, cediranib, dasatinib (BMS-354825), imatinib, motesanib (AMG-706),		Stem cell pathways	Hh (SMO)		RO4929097, vismodegib (GDC-0449), XL139 (BMS-833923)	Cyclopamine, IPI-926, LDE225
		pazopanib, regorafenib, sorafenib, sunitinib, vatalanib			Notch (γ-secretase)			MK0752, MRK-003, PF03084014
FLT-3		MK0457, sorafenib, sunitinib, XL999		Telomerase	Telomerase		Imetelstat (GRN-163L), KML-001	Sodium meta-arsenite
SRC/BCR-ABL		AZD0530, dasatinib (BMS-354825), imatinib, XL999	KX2-391	Cell cycle/cell	p53		(sodium meta-arsenite)	p53 peptide vaccine, PRIMA-1
DDR2		Dasatinib (BMS-354825)		proliferation	MDM2			JNJ-26854165, RO5045337

RTK, ALK, QALY

Economic Analysis: Randomized Placebo-Controlled Clinical Trial of Erlotinib in Advanced Non-Small Cell Lung Cancer

Penelope A. Bradbury Ming-Sound Tsao, Willi Group on Economic Ar

British Journal of Cancer (2012) 106, 1100 – 1106 © 2012 Cancer Research UK All rights reserved 0007 – 0920/12

www.bjcancer.com

Manuscript received M

Correspondence to: Natasi

Results

The increme year gained magnitude of cost-effective

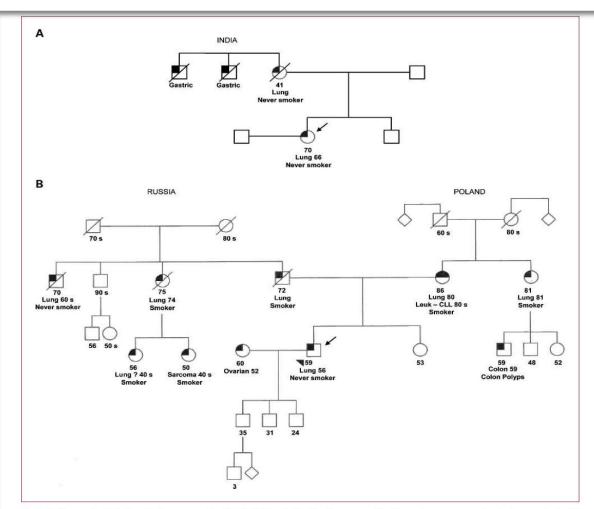
J Natl Cancer

The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers

AJ Atherly and DR Camidge*,2

¹Department of Health Systems, Management and Policy, Colorado School of Public Health, University of Colorado, Aurora, CO, USA; ²Division of Medical Oncology, University of Colorado Cancer Center, Anschutz Medical Campus, Anschutz Cancer Pavillion, Mailstop F704, 1665 North Aurora Court, Aurora 80045, CO, USA

NSCLC, excluding treatment of biomarker frequency from 1.6 unscreened group. Cheaper screeced proportion of subjects effect of screening cost per pachievable at biomarker frequency.


4	Targeted Genetic Intervention	Cost per QALY
6	Lung /Erlotinib	\$94,638
s	Lung /ALK	\$106,707
p je	*BRCA1 testing/MRI age 35-54	\$55,420
	**Lynch/IHC/ <i>BRAF</i>	\$36,200
	*JAMA 295:2374, 2006 **Ann Int Med 155:69. 2011	

Exploiting Genetics of Resistence

Overview resistance		pe-guided, molecularly targeted cancer therapies and	associated mechanisms of acquired drug
Target	Drug	Acquired resistance mechanism (pre-clinical)	Acquired resistance mechanism (clinical)
EGFR	Gefitinib, erlotinib	EGFR T790M, MET amplification, IGF1R activation, EMT, reversible epigenetic	EGFR T790M, MET amplification, EMT, small cell differentiation
BRAF	Vemurafenib	CRAF elevation, <i>BRAF</i> amplification, COT1 elevation PDGFRB elevation, IGF1R elevation	NRAS mutation, MEK mutation, PDGFRB elevation, COT1 elevation
ALK	Crizotinib	EGFR activation, ALK secondary mutation	EGFR activation, ALK secondary mutation
SMO	Vismodegib, NVP-LDE225	SMO mutation, Gli2 amplification, Pl3K elevation	SMO mutation
PARP	Olaparib, iniparib, veniparib	BRCA2 intragenic deletion	None
JAK1,2	Several	None	None

Current Opinion in Genetics & Development 2012, 22:45–49

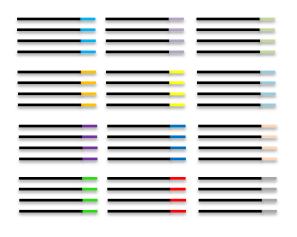
Woops, the tumor may show hallmarks of germline changes: the example of *EGFR*T790M*

CT screening reduces lung-cancer deaths in heavy smokers

(PhysOrg.com) -- Studying heavy smokers, the National Cancer Institute #146;s 33-center National Lung Screening Trial found that significantly fewer who were screened with low-dose CT scans died from lung cancer than heavy smokers screened with standard chest X-rays.

The study involved more than 53,000 people in the United States, including more than 3,800 participants at the Washington University School of Medicine and Barnes-Jewish Hospital.

JAMA. 2012;307(22):2418-2429

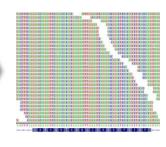

Fig. 3. Pedigrees of patients found to have a germ line EGFR T790M mutation. Numbers, ages of family members; arrows, probands; Lung, patients with lung cancer (followed by age at onset); Leuk, leukemia; CLL, chronic lymphoid leukemia; Gastric, gastric cancer.

Girard et al Clin Cancer Res. 2010 Jan 15;16(2):755-63

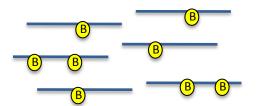
Model 2: Sequencing of "Actionable" Cancer Genes

IMPACT: Integrated Mutation Profiling of Actionable Cancer Targets


Prepare 12-24 libraries


Hybridize and select (NimbleGen SeqCap)

Sequence to 500-1000X (1 lane of HiSeq 2000)


Align to genome and analyze

Baits for 230 cancer genes

Berger Lab

Genomics Core Lab

Berger Lab

Berger Lab

Current List of 230 Cancer Genes

ABL1	CBLC	DNMT1	FGFR1	IGF1R	MDM2	NOTCH2	PNRC1	
ABL2	CCND1	DNMT3A	FGFR2	IGFBP7	MDM4	NOTCH3	PREX2	
AKT1	CCNE1	DNMT3B	FGFR3	IKBKE	MEN1	NOTCH4	PRKAR1A	
AKT2	CD79B	EGFR	FGFR4	IKZF1	MET	NPM1	PRKCI	
AKT3	CDC42EP2	EIF4EBP1	FH	INSR	MITF	NRAS	PTCH1	
ALK	CDC73	EP300	FLCN	IRS1	MLH1	NTRK1	PTEN	
ALOX12B	CDH1	EPHA3	FLT1	IRS2	MLL	NTRK2	PTPN11	
APC	CDK4	EPHA5	FLT3	JAK1	MLL2	NTRK3	PTPRD	
AR	CDK6	EPHA6	FOXL2	JAK2	MLL3	PAK7	PTPRS	
ARAF	CDK8	EPHA7	GATA1	JAK3	MLST8	PARK2	RAF1	
ARHGAP26	CDKN2A	EPHA8	GATA2	JUN	MPL	PARP1	RARA	
ARID1A	CDKN2B	EPHB1	GATA3	KDM5C	MSH2	PAX5	RB1	
ASXL1	CDKN2C	EPHB4	GNA11	KDM6A	MSH6	PBRM1	REL	
ATM	CEBPA	EPHB6	GNAQ	KDR	MTOR	PDGFRA	RET	(
ATRX	CHEK1	ERBB2	GNAS	KEAP1	MYB	PDGFRB	RICTOR	
AURKA	CHEK2	ERBB3	GOLPH3	KIT	MYC	PHOX2B	RPTOR	
BAP1	CREBBP	ERBB4	GRIN2A	KLF6	MYCL1	PIK3C2G	RUNX1	
BCL2L1	CRKL	ERG	GSK3B	KRAS	MYCN	PIK3CA	SDHB	
BCL6	CRLF2	ESR1	HDAC2	LDHA	NCOA2	PIK3CB	SETD2	
BIRC2	CSF1R	ETV1	HIF1A	LGR6	NF1	PIK3CD	SHQ1	
BRAF	CTNNB1	ETV6	HMGA2	MAGI2	NF2	PIK3CG	SMAD4	
BRCA1	CYLD	EZH2	HNF1A	MAP2K1	NFE2L2	PIK3R1	SMARCA4	
BRCA2	DAXX	FAM123B	HRAS	MAP2K2	NFKB1	PIK3R2	SMARCB1	
CARD11	DDR2	FAM46C	HSP90AA1	MAP2K4	NFKB2	PIK3R3	SMO	
CBL	DICER1	FAS	IDH1	MAP3K8	NKX2-1	PKM2	SOCS1	
CBLB	DIS3	FBXW7	IDH2	MCL1	NOTCH1	PLK2	SOX2	

STABLISHED 188

SPOP SRC STK11 SUFU TBK1 TEK TERT TET1 TET2 TGFBR2 TMPRSS2 TNFAIP3 TOP1 TP53

TSC1 TSC2 TSHR VHL WT1 YAP1 YES1

Caveats:

-VUS!

- consent

When lawyers write consents for commercial (for-profit) NGS

Exome Requisition - Proband (requisition and consent)

*Required for processing

4b. OPTION FOR RESULTS BLINDING (LATER-ONSET DISEASE) [Skip if <18 y.o.]

Later-onset disease: A mutation may increase the risk of developing a particular disease. An individual may carry a mutation but not yet have symptoms of this disease. This can be because symptoms usually begin at an age older than the individual has currently attained. These diseases also may not be fully penetrant; that is, often a mutation in one of these genes may simply increase individual risk of disease but does not predict the onset of disease with certainty. For example: A 40-year-old man is found to carry a mutation in a gene which increases the risk of dementia. He is in excellent health and has no problems with memory or cognition. This may be because the individual will develop symptoms at a later age (50's or 60's) or this individual may never develop symptoms (not penetrant).

In some cases, preventative treatment may be available to prevent or slow the onset of symptoms. Some of these disorders would include: Alzheimers disease, Parkinsons disease, polycystic kidney disease, hypertrophic cardiomyopathy, and many more.

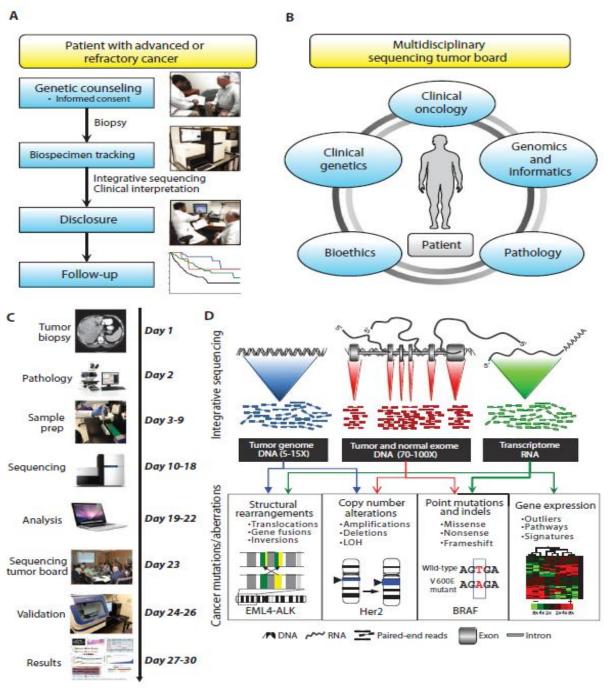
This information may impact personal health (choose one):
☐ I choose to receive information regarding risk for later-onset disease.
☐ However, there are specific genes or conditions for which I DO NOT want to receive information (indicate them below or attached additional sheet
☐ I choose NOT to receive information regarding risk for later-onset disease.
However, there are specific genes or conditions for which I DO want to receive information (indicate them below or attached additional sheet). (Initial here)

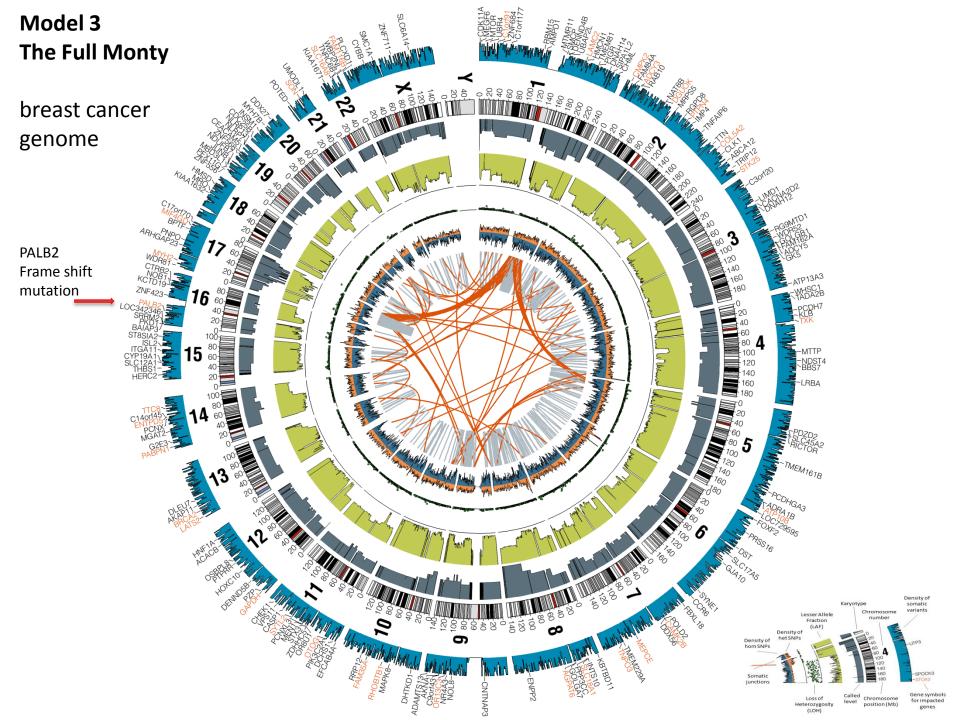
When Academics write Consent for Research NGS

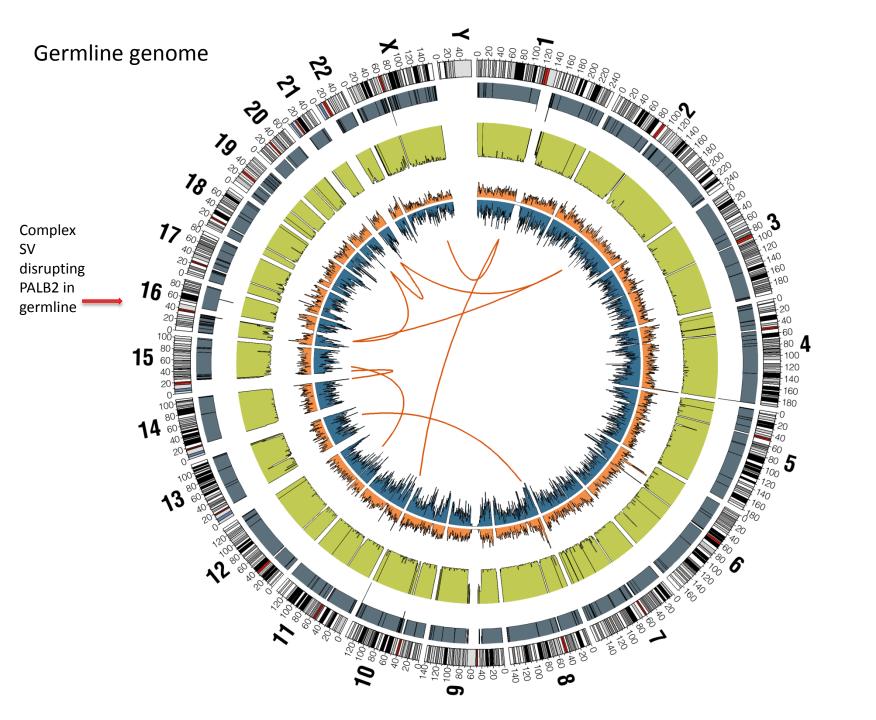
UNIVERSITY OF MICHIGAN CONSENT TO BE PART OF A RESEARCH STUDY

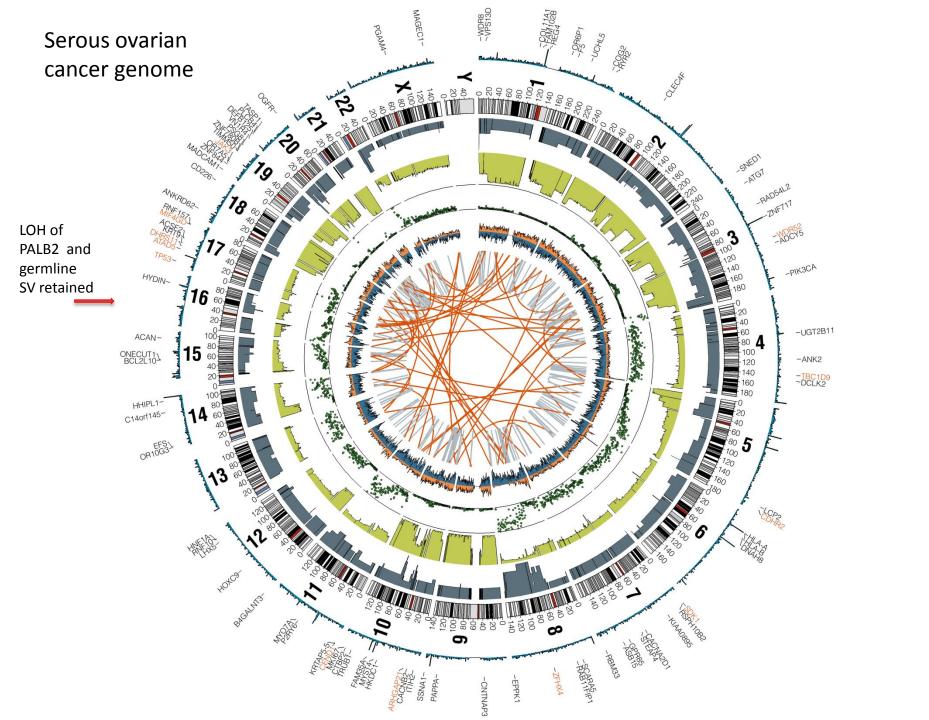
Please feel free to ask questions and discuss your preferences with the study team members. They will help you complete the table. If you do nothing, you will be told. However, if you wish not to be told, please initial where indicated below.

What choices do I have for receiving these other results that do not have direct impact on care of my current cancer?	If you do NOT want to be told of these results, please initial the boxes below.
Results that may have significance for biological family members.	
Results that are not related to your cancer, but may have potential medical impact for you.	


5.2 What are the risks of genetic research?


There are some risks to receiving genetic results. Participants could experience risks such as psychological or emotional distress, loss of insurance, loss of employment, discovery of previously unknown health conditions, discovery that you are not the biological parent of a child(ren), or discovery that you could carry a gene for a certain disease, etc. Therefore, we offer **genetic counseling** before participation in the study as part of the informed consent process.



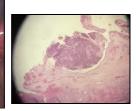

Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study

Sameek Roychowdhury et al. Sci Transl Med 3, 111ra121 (2011); DOI: 10.1126/scitranslmed.3003161

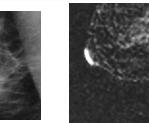
Kauff, Offit, *NEJM* 2002; 23;346(21):1609-1534

Robson and Offit, *NEJM*. 2007;357(2):154-62.

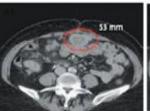
CLINICAL PRACTICE

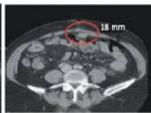

Management of an Inherited Predisposition to Breast Cancer

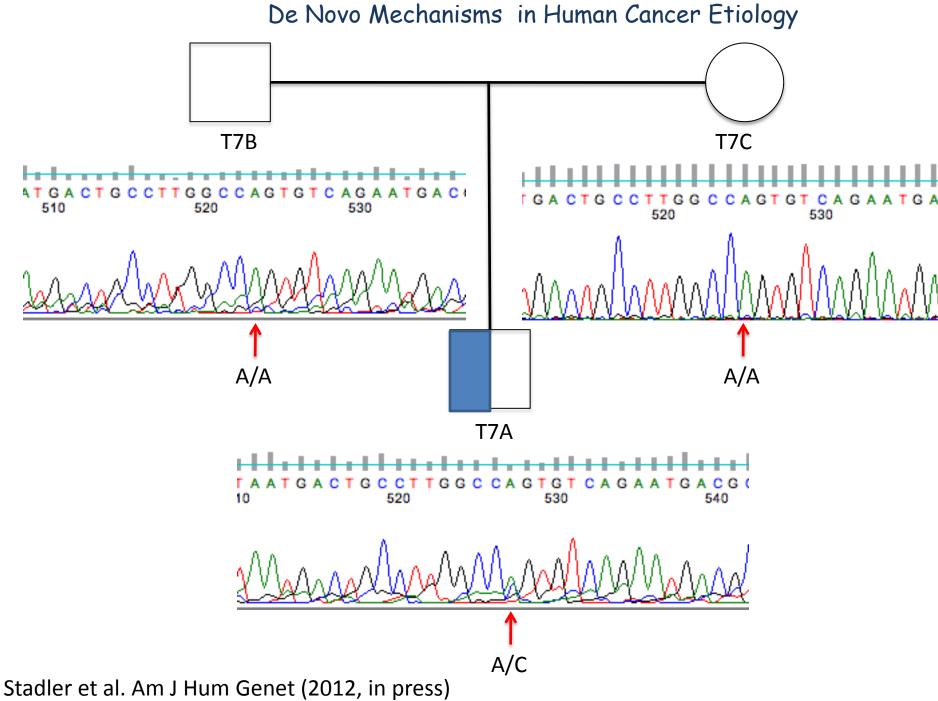
Mark Robson, M.D., and Kenneth Offit, M.D., M.P.H.


Positive BRCA1 or BRCA2 test result

Identify at-risk adult relatives; offer genetic counseling/testing


Increased surveillance




Chemoprevention

Treatment PARPi

Adapted Berg model

Return of results	OPT-OUT:		OPT-IN:		OPT-IN:	UNAVAILABLE
	RESULTS CHANGE MEDICAL MANAGEMENT	IT MAY BE IMPORTANT CHANGE ME	FINFORMATION BUEDICAL MANAGEM	PRENATAL TESTING MAY BE AVAILABLE	UNINTERPRETABLE INFORMATION	
BINs	1	2A	2 B	2C	3	4
level of risk:	High	Low Medium		High	Low to person, potentially high to offspring	
Examples:	a single gene change that gives a >60% life time risk for breast cancer OR a single gene change that causes people with it to have less side effects when a certain drug is given		nispasps or sinaip	a single gene change that gives a high life time risk for untreatable neurodegenera tive disease	Carrier status for severe AR or X- linked disease : childhood onset neurodegenerative disease OR Mental retardation	Will need further research before clinical relevance can be established

table adapted from Berg et al. (reproductive bin 3 added)

Results of a single genome (exome)

```
No bin 1 variants
Bin 2a: 3 SNPs
   1 = PharmG
      CYP2C9 rs1799853
  2 = low risk cancer SNPs
     IL23R rs11209026
      CLPTM1L rs402710
Bin 2b: 14 previously reported variants, no novel
  3 carrier conditions: Sitosterolemia,
  Methylmalonic aciduria, Hemansky Pudlak
  syndrome
```

The effect sizes of most GWAS cancer risk SNPS are small and of no clinical utility (Stadler et al 2010,2011; EGAPP)

Genetics, Genomics, and Cancer Risk Assessment

•Gaudet PLOS Genet, Couch Nat Genet, 2010, submitted

HMZ nonsense

														_
	А		В	С	D	Е	F	G	Н	I		J	K	L
1	GENE	•	SAMPLE 💌	CHROM 💌	POS	REF 💌	ALT 💌	FILTER 🛂	QUAL 💌	ID 🔻	SNPEFF_EFFECT	•	SNPEFF_FUN(SNPEFF_IM
15275	OVGP1	9	s_11_7_19	chr1	111968121	С	Т	PASS	3681.66	rs1264887	STOP_GAINED		NONSENSE	HIGH E
15384	OR52N4	9	s_11_7_19	chr11	5776484	Α	Т	PASS	8847.87	rs4910844	STOP_GAINED		NONSENSE	HIGH E
15846	MUC19	9	s_11_7_19	chr12	40834955	С	Α	PASS	3196.79	rs1078461	STOP_GAINED		NONSENSE	HIGH E
16258	FAM187B	9	s_11_7_19	chr19	35719020	С	T	PASS	2985.7	rs541169	STOP_GAINED		NONSENSE	HIGH E
16697	ADAMTS1	9	s_11_7_19	chr21	28216066	С	Т	PASS	1329.42	rs370850	STOP_GAINED		NONSENSE	HIGH E
16959	H2BFM	9	s_11_7_19	chrX	103294760	С	Т	PASS	558.3	rs2301384	STOP_GAINED		NONSENSE	HIGH E
22260														

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes Daniel G. MacArthur et al. Science 335, 823 (2012);

DOI: 10.1126/science.1215040

Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease—causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.

Cancer Clinical Scenario Conclusions

- Model 1 (targeted mutation testing):
 - Targeted therapy is current practice, but access an issue
 - More expensive with more targets and more resistance
 - A resistance genotype may be seen in the germline
 - Cost of companion diagnostics may be impacted by *Prometheus* case (*)
- Model 2 (NGS for disease and actionable variants):
 - Exon capture and whole exome analysis of tumors require germline controls: disclosure of actionable variants in cancer will impact pharmacogenomics as well as non-cancer disease risk in future generations
- Model 3 (NGS + incidentaloma with no threshold):
 - Whole exome/genome analysis of tumors may reveal germline changes with therapeutic as well familial risk implications.
 - May be prefigured if ID HHS-OPHS-2011-0005 change in 45 CFR (*)
 - As in other scenarios, full disclosure of "incidentalome" outside context of medical practice standards -- will likely lead
 to clinical and economic inefficiencies (variants, utility
 concerns).

