Drug Repurposing: An Academic Perspective

Larry A. Sklar and Tudor I. Oprea
University of New Mexico Center for Molecular Discovery
and Translational Informatics Division
NIH U54MH074425/084690

- Academic Motivation/Drivers
- Repurposing Experiences at UNMCMD
- Personalized Medicine/Compassionate Use/Genomics
- Lessons Learned

Discovery Comes to Academia

NIH Programs:

- Biomedical Engineering Consortia 1999 (Technology Development)
- Molecular Libraries Pilot /Production Phases 2005/2008
 - Mol Lib Small Molecule Repository updates include approved drugs
 - X01/R03 funding mechanisms to target providers and screening centers
 - Funding evolves to R01 and R21 mechanisms
- NCI Experimental Therapeutics Program (NExT) consolidates therapeutics programs
- NCI designated cancer centers mandate investigator initiated trials
- Clinical and Translation Science Award (CTSA) Consortium mandates translation of experimental findings; pilot project funding mechanisms for repurposing screens

New and Emerging Opportunities

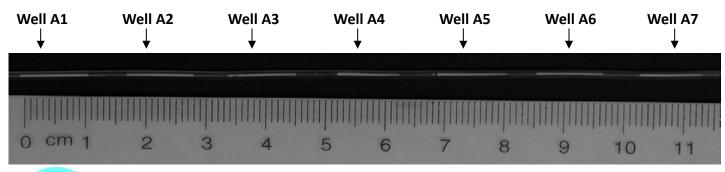
- Proliferation of discovery meetings, funding initiatives, compound collections, screening technologies
- Pharma/biotech business models evolve (late stage value proposition)
- Academic Drug Discovery Consortium ~75 members
- International Chemical Biology Society

Academic Landscape Seen From Within

- Faculty Business Model:
 - Research, Service, Education
- Individual Success Measures:
 - Publications, Tenure, Intellectual Property
- Translation becomes priority
 - Commercialization/Technology Transfer/Economic Development
 - Clinical Trials
 - Centers programs (NCI/CTSA) mandate investigated initiated trials on short time lines
- Collaborators, agencies, patients are clients

The View from UNMCMD

- 1999: 1st round BECON/BRP to develop HT flow cytometry
- 2000: Cancer Center Planning Grant
- 2005: Molecular Libraries Pilot Phase (10 comprehensive centers)
- 2005: Cancer Center at UNM
- 2008: Molecular Libraries Production Phase
 - 4 comprehensive, 2 chemistry, 3 specialty centers
- 2008: NExT Program (MLP/non MLP centers compete)
- 2009: CTSA program at UNM includes repurposing
- 2010: Molecular Libraries R01 funds update from 384 to 1536 wells (B. Edwards)
- 2010: Cancer Center Renewal includes repurposing
- 2010: ARRA funding allow enhancement of UNMCMD
- 2010: Molecular Libraries adds translational "extended probe characterization"
- 2013: UNMCMD moves into new space



HyperCyt

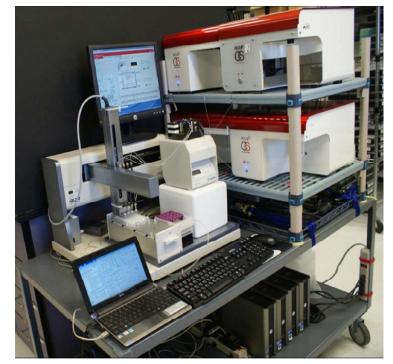
pump Autosampler **US Patents** Sklar, Edwards & Kuckuck Flow cytometer 6,878,556; 6,890,487; 7,368,084 HyperVu software from Intellicyt Laptop PC Sampling line

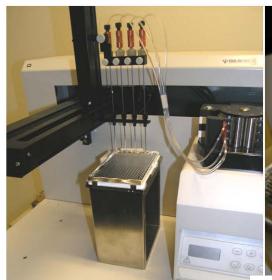
Sampling probe

Samples: 40/min, 2 µl Each, Separated by Air Bubbles

Microplate

Peristalic




NEXT GEN HTS Edwards

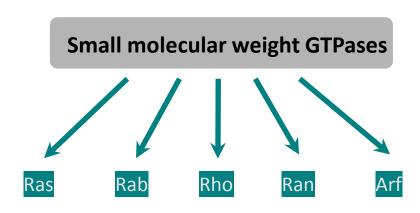
DIRECT FEED

1536

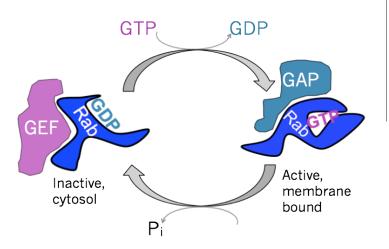
Repurposing Input

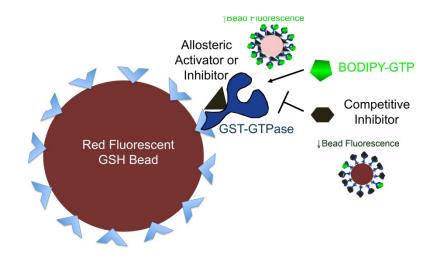
- Experimental
 - Integrin, Transporters, GPCR, GTPase, GRK2
- Modeling and Docking
 - Metnase
- Chem Informatics
 - Cyclobenzaprine: similarity between mono-amine transporter and serotonin receptor ligands
- Off label indications from clinicians
- Hybrid, experiments followed by computation
 - GTPase

Informatics Workflow

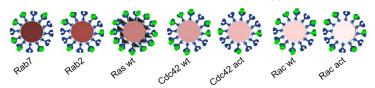

- DRUGSDB: Annotating Medicines
 - 40,000 drugs mapped onto 1700 active pharmaceutical ingredients
 - 1200 APIs account for 13000 numerical bioactivities alone; proceed to pathways
 - Maps drugs, indications, targets, off-label usage from electronic health records
 - Decision Making;
 - On label/Off label
 - Contraindications
 - Public Domain/Prior Art
 - Implications for Target/Clinical Outcomes
- WOMBAT (Sunset Molecular Product/Oprea)
 - Effective concentration via PK data, Serum trough, MRTD, Bioavailability, Volume of Distribution, "Medi Index"

Screening Based on Novel Technology


- HTS Flow Cytometry
 - Suspension targets, no wash binding, multiplex
- Multiplex targets:
 - GTPase, Bcl family regulators, etc.
- Integrin LIBS:
 - thioridazine is allosteric integrin regulator
- Transporters: chemoresistance in cancer and infectious disease
- Tagged GPCR:
 - anisomycin downregulates B2AR



HTS for Small Molecule GTPase Activators & Inhibitors: Wandinger-Ness, UNMCMD, KUSCCC

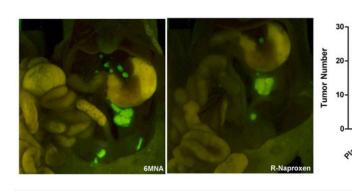


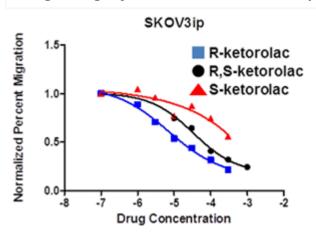
GTPases as Molecular Switches

Multiplex HTS using Graded Intensity Red Fluorescent Beads bearing Individual GTPases (Rab, Ras and Rho-family) and BODIPY-GTP

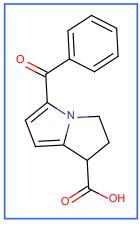
Outcome: Pan-activator probes, Rho family inhibitor, Cdc42 inhibitor probe, Pan-inhibitor probe. Ketoralac regulates Rab7/EGFR in ovarian cancer

Division of





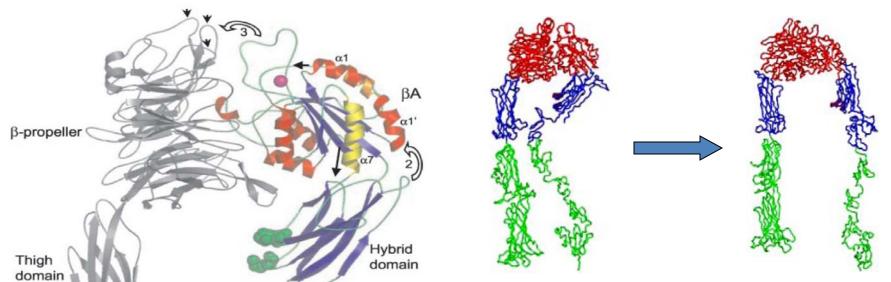
Ketorolac as GTPase Inhibitor



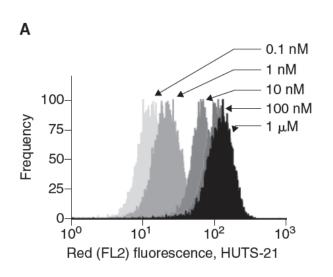
R-Naproxen reduces tumor number in xenograft model. Athymic nude mice after oral doses (10mg/kg) of each compound. Tumor: GFP-tagged SKOV3ip cells (h. ovarian). Work by Angela Wandinger Ness and colleagues

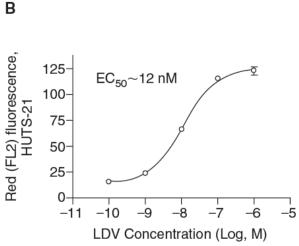
Based on R-Naproxen (early hit), nabumetone and ketorolac were evaluated. The lack of activity by >20 other NSAIDs against GTPase targets strongly suggests enantiomer-selective targeting of Rac1 and Cdc42 by R-naproxen and R-ketorolac.

Once the " α -methyl-carboxylate" moiety was identified as critical, a number of NSAIDs and other α -Me-COOH drugs were evaluated. Ketorolac was rapidly identified as matching both the moiety and indication requirements.



Ketorolac (Toradol™, Acular™) is approved as racemate.

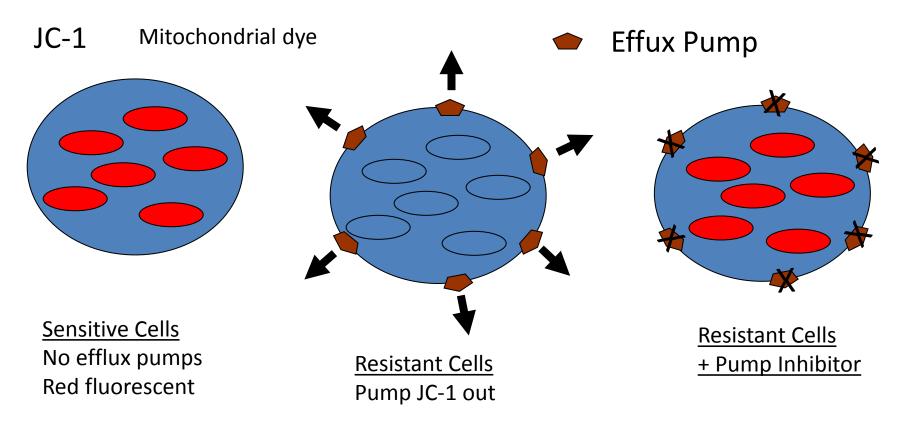

Currently, ketorolac is under clinical evaluation (concept testing) at the UNM Cancer Center as adjuvant therapy in ovarian cancer (PI: Carolyn Muller, MD).



Detection of Ligand Induced Binding Sites (LIBS) for Allosteric Regulators (Chigaev, Sklar, Wu)

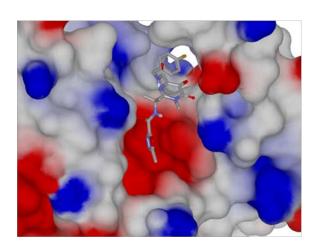
LIBS antibody epitopes exposed by conformational change on ligand binding

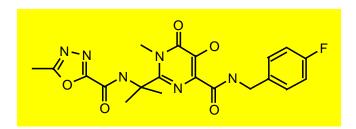
Thioridazine regulates VLA-4 LIBS. Starting trial for stem cell mobilization; potential for environmental mediated drug resistance.

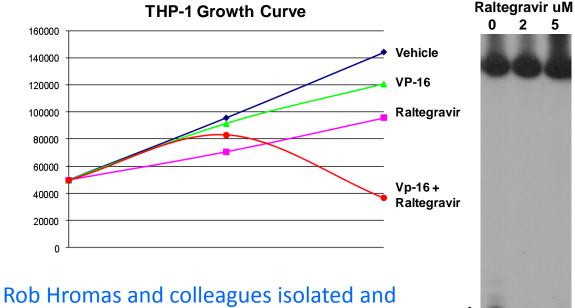

Chiagev, Sklar JBC 2011

Drug Resistance Efflux Pumps

Larson, Winter, Ivnitski, Edwards, Young, Strouse, Perez, et al


Protect cancer cells from therapeutic drugs by pumping the drugs out of the cells before damage can be incurred


Mometasone furoate for allergic rhinitis, regulates pumps; off-target/side effect liabilities.



Metnase as Drug Target for Raltegravir

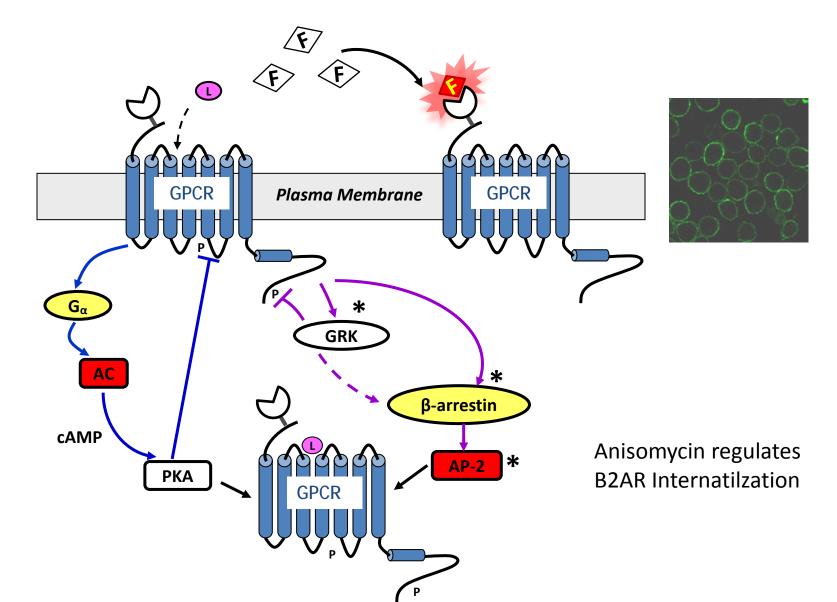
Raltegravir docked into Metnase

Flap cleavage

Rob Hromas and colleagues isolated and characterized methase, a DNA repair enzyme with a transposase domain
Williamson et al Cancer Research 2012

Virtual screening using the 3D structure model for Methase suggested that the FDA-approved HIV integrase inhibitor Raltegravir (Isentress™) can bind into its nuclease active site.

Raltegravir blocks Methase's flap endonuclease activity. Adding raltegravir to VP-16 restores chemosensitivity in leukemia cells. We also have some medchem leads in the area...


Raltegravir is under evaluation for head & neck squamous cell carcinoma at UNM CC

GPCR Signaling & FAP-Detection

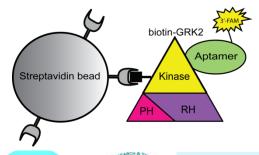
Wu, Tapia, Fisher, Bruchez, Waggoner, Jarvik (Mol Pharm, 2012)

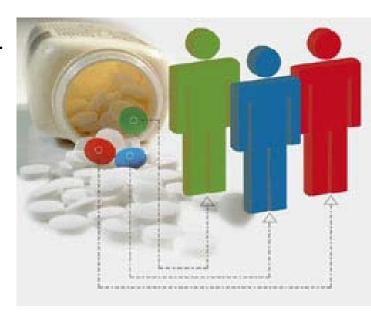
Two Models of Precision Leukemia Medicine

Prognostic (Nodality)

- Patient diagnosis
- Small collection of drugs (6-10) representing therapeutic options
- Drug sensitivity markers in patient sample (few samples)
 - "Deep" pathway analysis or phenotypic responses
- Drugs recommendations are prioritized based on pathway responses

Compassionate Use (FIMM)


- Patients fails chemotherapy (refractory or relapsed)
- Molecular profiling and clinical information
- Collection of drug represents oncology drugs (approved >100, trials >200); expanded by safe or approved drugs
- Phenotypic drug sensitivity (e.g., viability, many samples)
- Systematic testing of drug combinations guided by sensitivity, pathway analysis, profiling
- Compassionate use guided by all available information


Lessons Learned

- Typical to find activities in repurposing screens
- Mechanism of action of off-target effects suggests new indications
- Academics bring new screens for old targets
- Often pair screens for NCE and repurposing depending on resources
- Align resources for followup, pre-clinical work, formulation, clinician engagement early

Summary Highlights

- GTPases (ML97-99, ML142, ML231 and Repurposed NSAIDs)
 - FDA approved NSAIDs in ovarian cancer models
- Multidrug Resistance/Cancer Chemoresistance (Larson) (ML 230 and Repurposed)
 - Reverse chemoresistance in blood cancers, solid tumors
- Cell adhesion regulators (Chigaev/Sklar) (Repurposed)
 - IND Phenothiazines releases cells from bone marrow
- Non-canonical GRK2 inhibitor Paxil strengthens myocardial contractions (Tesmer, ACS Chem Biol 2012)
- Opportunities for non-canonical GPCR regulators
- Personalized medicine in blood cancers

http://www.policymed.com/2010/ 12/tufts-study-shows-drugdevelopment-for-personalizemedicine-on-the-rise.html

