Application of a semi-quantitative metric to assess medical actionability of genomic findings

Jonathan S. Berg

Department of Genetics

UNC Chapel Hill

Incidental/secondary findings

- The vast majority of genomic variants have no known clinical relevance and thus poor positive predictive value
- Therefore, it is imperative to maximize specificity and avoid reporting variants with no known clinical validity in the setting of an asymptomatic individual
 - Setting a "high bar" to ensure that variants reported to physicians/patients can be incorporated into clinical care in an evidence-based fashion, and *ignore* everything else until we know what to do with it

Role of individual preferences

- Genome-scale sequencing, like any other complex medical test, can help, harm or confuse
 - Each individual will hold different views on the benefits and risks of genetic information
 - There is no standard of care for return of results from genome-scale sequencing
- We propose calibrating results by the potential benefits and <u>risks</u> of the incidental findings
 - Taking into account patient preferences when evidence of direct clinical benefit is lacking

Framework for genomic analysis

- An a priori structured framework for handling genomic findings
 - Avoiding "one-off" decisions that may not be consistent from one patient to the next
 - Organized around the concepts of clinical validity and clinical utility ("actionability")
 - Intended to facilitate pre-test informed consent, analysis, and post-test return of results

The "binning" process

- Step 1: Categorize gene/phenotype pairs into "bins" according to clinical actionability and risk for psychosocial harm
 - Assuming a pathogenic mutation and considering the most severe outcome
- Step 2: Define the types of variants that should be reported
 - Known pathogenic, likely pathogenic (?), VUS, likely benign, benign (setting a high threshold for return)
- Step 3: Sort the individual's variants computationally into predetermined "bins"
 - Review/report only variants in binned genes, meeting defined criteria

Clinical Actionability

- Requires technical and interpretive accuracy (analytic validity and clinical validity)
 - Findings with high specificity and thus high PPV
 - Hence the high threshold for reporting variants
- In the context of incidental findings or an asymptomatic individual, "actionability" implies that an intervention exists that can mitigate harm before a clinical diagnosis is made
 - And that such an intervention does not impose undue hazards to an individual

Bin 1	Bin 2	Bin 3
Loci with Clinical Utility (medically actionable)	Loci with Clinical Validity (non-medically actionable) High-risk	Loci with Unknown Clinical Implications
Lynch syndrome Hemochromatosis Long QT Etc.	GWAS Carrier Mendelian PGx status disorders	ALL OTHER LOCI
Actionability	Potential for psychosocial harm	

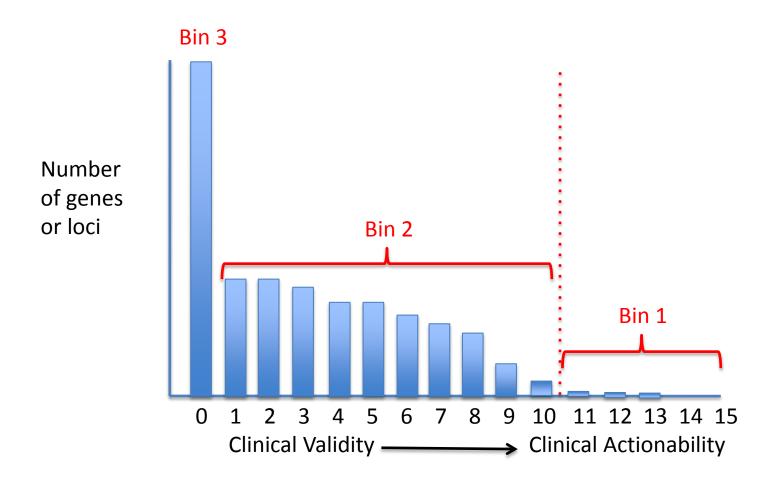
Locus-Variant Binning Committee

- Multidisciplinary team charged with defining the content of "Bin 1" for the NCGENES project
 - Medical geneticists (adult, pediatric)
 - Genetic counselors
 - Neurologist
 - Cardiologist
 - Generalist physician
 - Molecular lab
 - Bioethicist
 - IRB representative

"Binning" by Consensus

- The challenge is determining which genes cross a threshold for "Bin 1"
 - Expert consensus-based methods inevitably result in a list that no one really likes
- Definitions of "actionability" will differ
- Specific decisions are sometimes inconsistent
- We saw a definite need for a transparent, reproducible, evidence-based method

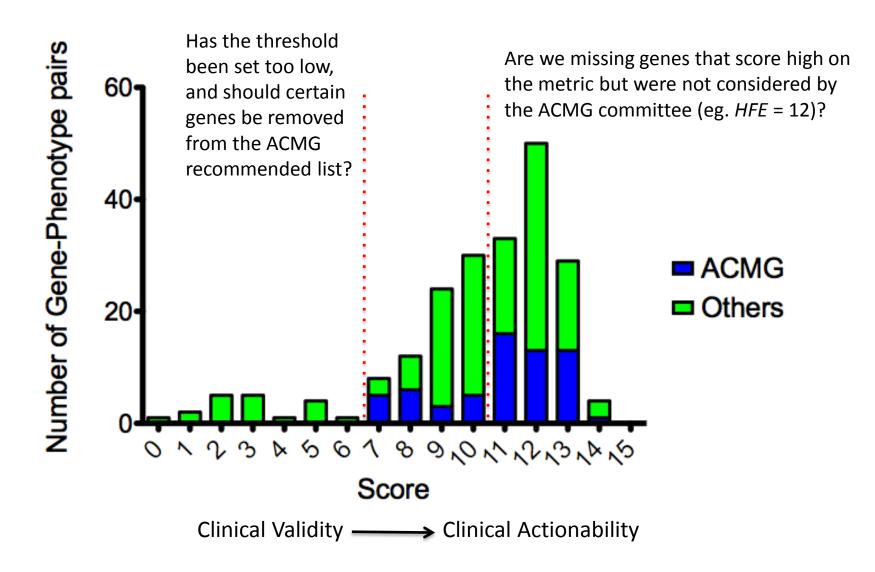
Elements of "actionability"


- Severity of disease
 - Typically the most severe possible outcome
- Likelihood of a severe outcome
 - Matched to the outcome of interest
- Effectiveness of intervention
 - To mitigate the severe outcome
- Acceptability of intervention
 - Encompassing the hazards of the intervention
- Knowledge-base
 - Including knowledge about the gene/phenotype association, disease manifestations, and interventions

Semi-quantitative metric

 Severity of disease 	(0-3)
 Likelihood of a severe outcome 	(0-3)
 Effectiveness of interventions 	(0-3)
 Acceptability of interventions 	(0-3)
 Knowledge base 	(0-3)
	0-15

These elements can be used to generate a semiquantitative "clinical actionability" score for every gene-phenotype pair


Theoretical results

Flexibility of a standardized score

- Setting thresholds = striking a balance
 - Benefit versus harm
 - Paternalism (duty to warn / do no harm) versus patient preference (right to know / not to know)
- Now being used in NC NEXUS, CEER, ClinGen
 - Could be useful in other efforts such as ACMG recommendations for return of incidental findings

Application of the metric

Advantages

- Transparent, less subjective than expert opinion
- Evidence base can be clearly defined
- Workload could be crowd-sourced (eg. ClinGen)
 - Analyze consistency/variability of scores
- Allows different end users to set thresholds
 - Can differentially weight parameters depending on the scenario (research, diagnostic testing, healthy adults, newborn screening, etc.)
- Scores can be revisited over time as new evidence accrues

Acknowledgements

- Jim Evans
- NCGENES LVBC
 - Kate Foreman
 - Kristy Lee
 - Julianne O'Daniel
 - Cecile Skrzynia
 - Myra Roche
 - Dan Nelson
 - Brian Jensen
 - Cindy Powell
 - Karen Weck
 - Kirk Wilhelmsen

NHGRI

"NCGENES" CSER U01 HG006487-01

"NC NEXUS" NBS U19 HD077632-01

"ClinGen" CRVR U01 HG007437-01

"GeneScreen" CEER P50 HG004488-06

EGAPP Working Group