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IOM Workshop on Non-Invasive Modulation of the Central Nervous System



Who we are:
• 30 regulatory scientists
• 60 fellows, students, contractors

Regulatory Science in the FDA Division of Biomedical Physics

The Virtual Family High resolution head model

EMC, wireless coexistence

Retina Phantom Optical-thermal modeling

Field

Regulatory science: 
development of new tools, 

standards, and approaches to 
assess the safety, efficacy, 

quality, and performance of all 
FDA regulated products

Neural implant reliability

1 week

Electrophysiology TPM OCA Immunohistology

Clinical ECG outcome modelsBiophysics

Human FactorsFunctional Models

Optics

Electromagnetics

Functional Performance & Device Use

Laser Tx



Noninvasive Modulation of Brain Function

Possible Modalities
1. Electromagnetic

Transcranial DC
Transcranial AC
Magnetic Stimulation (low and high frequency)

2. Optical
Near IR
Channel Rhodopsin

3. Mechanical
Ultrasound 3



1. Transcranial DC, then and now

4

Plate V in Aldini J., Essai théorique et 
expérimental sur le galvanisme. Paris: 
Fournier Fils, 1804.  Galvanism is being 
applied on the head of Luigi Lanzarini.

Parent, Can. J. Neurol. Sci. 2004; 31: 576-584

http://www.extremetech.com/extreme/121861-goflow-a-
diy-tdcs-brain-boosting-kit

“DIY tDCS brain-boosting kit”



Extracellular Current Polarizes Cells
a. Location of current
b. Current polarizes cells at opposite 

ends.
c. Longer cells are polarized more at 

their ends
d. Cell alignment with direction of 

current flow gives maximum 
polarization

e. Geometry and branching
f.  Waveform
g. Cell electrophysiology
h. Models are useful in predicting 



Local Nerve Stimulation
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Electric Field Stimulation
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Modulation at Branch Point Failure Site



DC Blocks or Relieves Block

63 mV/cm is 
minimum field for 

producing block



AC I/O for Unmyelinated Cell Model

from V. Krauthamer and T. Crosheck, MBEC, 2002
10

 refractory period due to K+ activation
 maximum firing rate (<200 Hz) too 

slow for Na+ inactivation



High Frequency Firing in Unmyelinated Cell
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12
Krauthamer, Crosheck MBEC, 2002

AC I/O for Myelinated Fiber Model –
High Frequency Block 

 refractory period due 
to Na+ inactivation

 maximum firing rate 
(~500 Hz) causes Na+

inactivation and 
refratoriness
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Stim Freq vs. Threshold at 14
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Stim Freq vs. Firing Rate

stimulation rate (Hz)

A.P. firing rate (Hz)
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Stim Freq vs. Efficiency

stimulation rate (Hz)
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2. Light: NIR (1889nm) on DRG Cells

13Katz, Ilev, Krauthamer, Kim, Weinreich, NeuroReport 2010, 21:662-666

Er=-47 mV
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Somatosensory evoked potentials 
recorded from epidural cortical 
electrodes following HIFU. SSEP 
amplitude drops following 
application.

3. Ultrasound Alters Evoked Potentials

Presenter
Presentation Notes
Figure 2: (A) Recordings of SSEPs in response to
electrical stimulation of the median nerve in
anesthetized mice (xylazine / isoflurane). Stimulating
the median nerve elicited prominent peaks on the
contralateral hemisphere at ~16 ms (positive polarity),
and ~22 ms (negative polarity) after MN stimulation. In
a representative experiment, evoked potentials were
recorded before, immediately after, 10, 30, and 60
minutes following delivery of a series of HIFU pulses to
the frontal association cortex. Each trace is the
average of 20 individual trials, delivered at 0.5 Hz.
Electrical stimuli consisted of a single 0.2-ms biphasic
pulse of 1.5 mA current. Immediately after HIFU, SSEP
amplitude is all but eliminated; the amplitude begins to
recover at latest by 30 minutes post-injury. (B) The bar
chart depicts the normalized trends in SSEP amplitude
following insult. The amplitude is here defined as the
maximum peak-to-peak difference between the peaks
at 16 and 19 ms latency. Following HIFU, there is
nearly an order of magnitude drop in amplitude
compared with baseline values; the amplitude largely
recovers by 30 minutes post-injury. (N=8, error bars
represent standard deviation).



CDRH Regulatory Pathways

Welle CG and Krauthamer V, “FDA Regulation of Invasive Neural Recording Electrodes”, IEEE PULSE, MARCH/APRIL 2012, pp. 37-41



Models Used for Assurance of Device Safety and Effectiveness
Human 
Trial

Animal 
Model

In Vitro Model 
(phantom)

Computer 
Model

cost very high moderate low low (after 
development)

time long moderate short short

ability to vary 
parameters

not easy limited limited high (good 
learning tool)

testing involving 
harm

no, 
unethical

restricted yes yes

simplifying 
assumptions

none none many and 
always

always (limiting)

relevance direct variable 
(species)

limited variable
(depends on 
validation)

testing of disease 
state

yes difficult simplified states yes 

experimental 
control

difficult good high high

interpretation of 
data and ability to 
predict

not easy yes limited Yes – can predict 
device and drug 
interactions 16

Presenter
Presentation Notes
We see computer models of humans as part of the range of studies we review for medical device approvals.  The advantages of Computer Models are: 1) once developed, they are of low cost; 2) they can be run quickly; 3) parameters can be tested that would be unethical for human subjects or animals (to define a safety window); 4) there is complete control of the “experimental” conditions; 5) they can be more relevant for human structure and function than live animal models; 6) known disease states can be included in the model - usually tests are done in healthy animal models; 7) parameters can be varied to predict interactions with other devices and drugs that may not be seen in the human trial.
The main drawback is what is known of physiology on a cell, tissue and organ level.  The best models are validated at all levels.  Currently, CDRH accepts computational results, with error analysis and some validation, for the MRI safety of orthopedic implants.  This saves companies from testing thousands of combinations of orthopedic devices in the MRI.  Similarly, the first MRI-conditional cardiac pacemaker was approved with some of the safety data from computational models.
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Modeling exposure of different brain 
locations to electric fields



Modeling electric field in the brain
• “Macroscopic” modeling (Organ level) 

– External source (e.g., TMS, tDCS, tACS)
– Anatomical precision  
– Electrical properties of brain & anisotropy 

• “Microscopic” level (Neuronal response) 
– What is the physiological response associated to a 

given electric field?  

• Model Validation
• Regulatory Science: the “MIDA” model

18



Macroscopic modeling
External 
source
(TMS)

19

Brain GM Brain WM
Electrical 
properties of 
brain (gray 
vs. white 
matter, 
anisotropy) 

Anatomical precision: 
where is the electric field?  
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Electric field and source configuration

A. Datta et al.,  NeuroImage 65 (2013) 280–287



21Wagner et al., Annu. Rev. Biomed. Eng. 2007. 9:527–65

Electric field and technology (e.g., TMS vs. tDCS)



22Parazzini et al., IEEE TransBiomEng 2011

Computational modeling in support of clinical studies

• Clinical and technological 
“pull & push” 

• Modeling can help to 
understand underlying 
mechanisms
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From Macroscopic to Neuronal response

C. Miniussi et al. / Neuroscience and 
Biobehavioral Reviews 37 (2013) 
1702–1712

A. Opitz et al., NeuroImage 58 (2011) 849–859
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Model validation

A. Datta et al. J. Neural Eng. 10 (2013) 036018A. Opitz et al. / NeuroImage 81 (2013) 253–264



Modeling electric field in the brain: Regulatory Science

Iacono MI, Neufeld E, Akinnagbe E, Wolf J, Oikonomidis IV, Sharma D, Wilm BJ, Wyss M, 
Pruessmann KP, Jakab A, Makris N, Cohen ED, Kuster N, Kainz W, Angelone LM. Submitted 

MIDA: A Multimodal Imaging-based Detailed model of the Anatomy of the human head 
and neck.

US Food and Drug 
Administration (FDA), 
IT'IS Foundation, Zurich, 
Switzerland 
ETH Zurich, Switzerland 
Medical University of Vienna, 
Austria 
Massachusetts General 
Hospital, Harvard Medical 
School, USA. 

Model of human head and 
neck freely available for the 
scientific community
MIDAmodel@fda.hhs.gov

mailto:MIDAmodel@fda.hhs.gov


Modeling the human head: the MIDA model

26Iacono et al., IEEE EMBS 2014



Gray Matter and White Matter

27

Cerebellar 
GM

Cerebellar WM

Brain GM Brain WM

Cerebellar 
GM

Cerebellar 
WM

Iacono et al., MIDA Model, submitted



Deep Brain

28

Basal Ganglia, Thalamus, & Limbic System

MIDA model

Iacono et al., MIDA Model, submitted



Bones and Vessels

29
Iacono et al., MIDA Model, submitted
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Case study – tACS

• Surface based models
• Inclusion of anisotropic properties
• “Functionalized model” (Neuronal 

response)

Neufeld et al., IEEE NER 2015

Iacono et al., MIDA Model, submitted



Summary
• Overview of non-invasive neuromodulation

devices (EM, optics, ultrasound)

• What is known and unknown about engineering 
neuromodulation devices

• Modeling exposure of different brain locations to 
electric fields

31



Thank you!
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