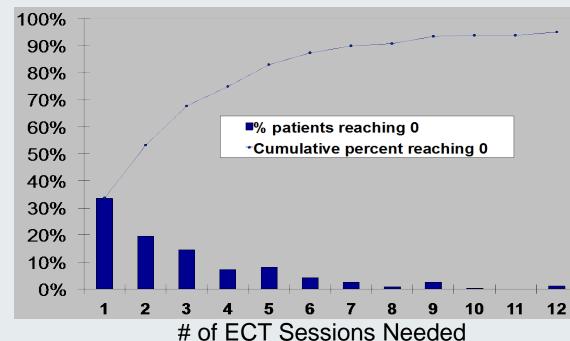
Noninvasive Neuromodulation in Psychiatric Treatment:

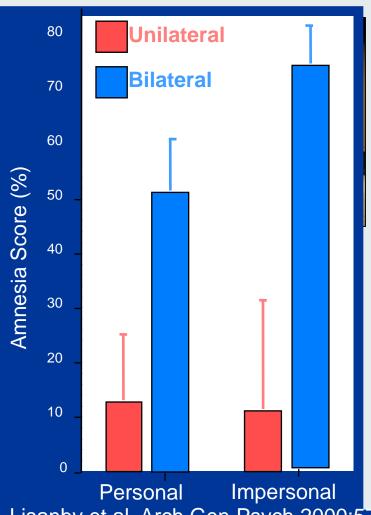
Current and Developing

Sarah H. Lisanby, MD J.P. Gibbons Professor and Chair

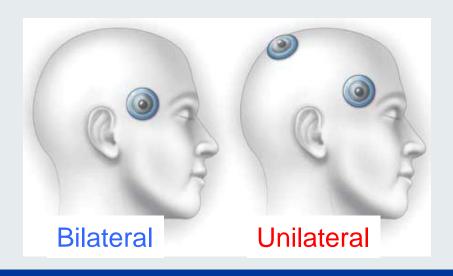
- Benefits
- Risks
- Critical knowledge gaps and needs for future work

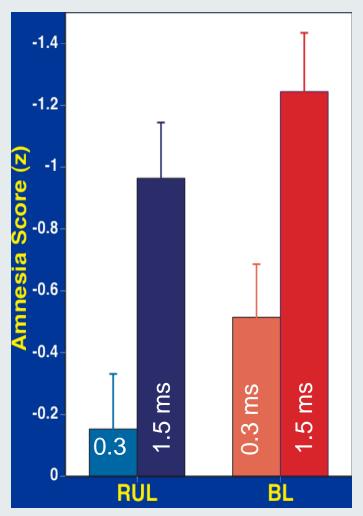
- **Benefits**
 - Unparalleled efficacy

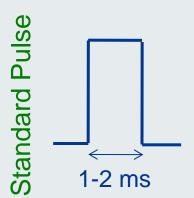


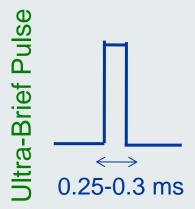

Benefits

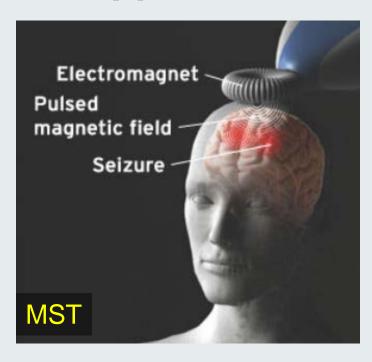
- Unparalleled efficacy
- Rapidly resolves suicide risk



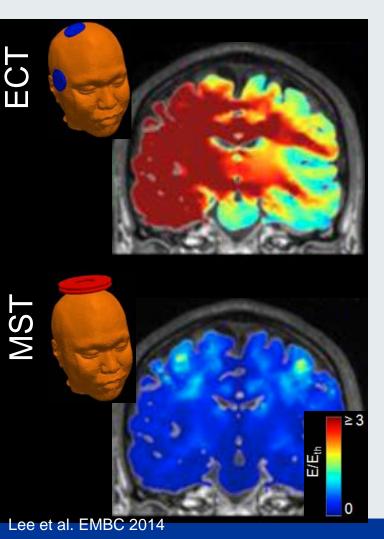


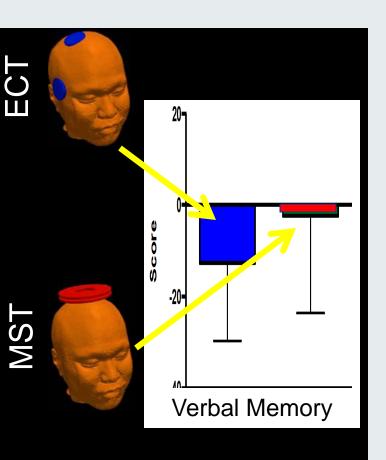

- **Benefits**
- Risks
 - Memory loss
 - Reduced with unilateral electrode placement





- Benefits
- Risks
 - Memory loss
 - Reduced with unilateral electrode placement, and
 - Ultrabrief pulse width

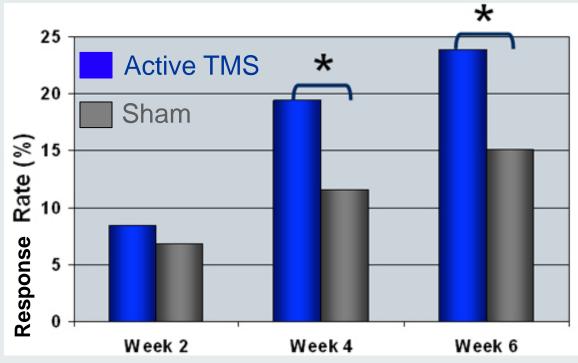




- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Novel strategies to protect memory
 - Magnetic Seizure Therapy

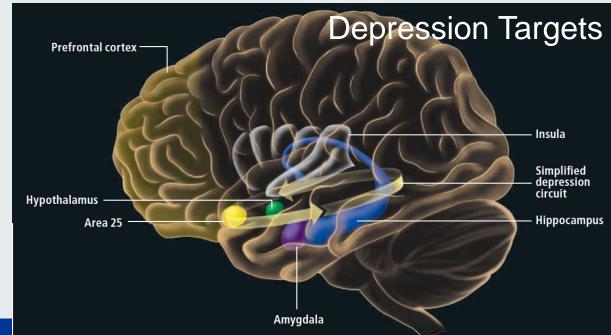
- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Novel strategies to protect memory
 - Magnetic Seizure Therapy
 - More focal Electric fields in brain

- **Benefits**
- Risks
- Critical knowledge gaps and needs for future work
 - Novel strategies to protect memory
 - Magnetic Seizure Therapy
 - More focal Electric fields in brain
 - Superior cognitive outcomes



- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Novel strategies to protect memory
 - Deeper understanding of mechanisms of action of seizures
 - Remains the most potent antidepressant and suicide prevention strategy currently FDA approved

- Benefits
 - Antidepressant efficacy



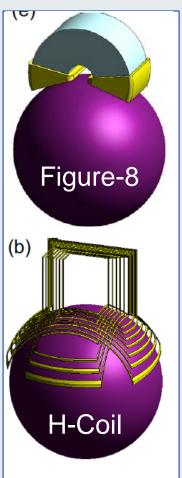
Benefits

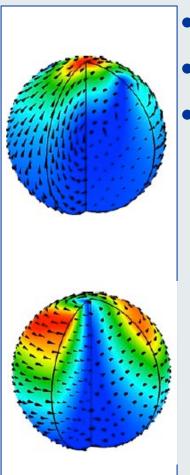
- Antidepressant efficacy
- Tool to target illness-related circuits

Benefits

- Antidepressant efficacy
- Tool to target illness-related circuits
- Lacks amnesia seen with ECT

- Benefits
- Risks
 - Hearing loss / tinnitus
 - Seizure
 - Role of concomitant medications
 - Medical comorbidities
 - Substance use disorders
 - Vulnerable populations
 - seizure threshold lower in children, seizure risk higher in autism and after traumatic brain injury

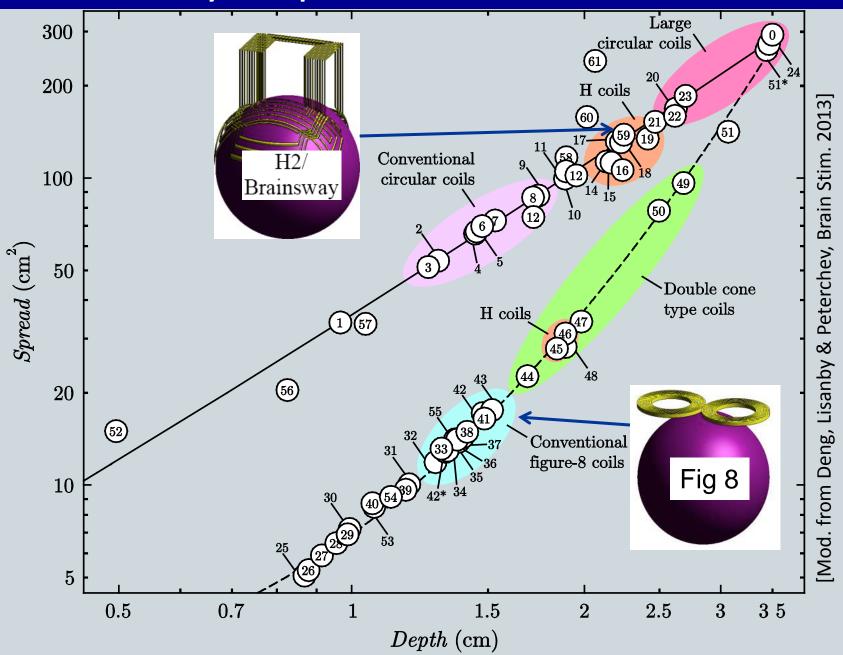



- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Optimal dosage
 - Spatial distribution

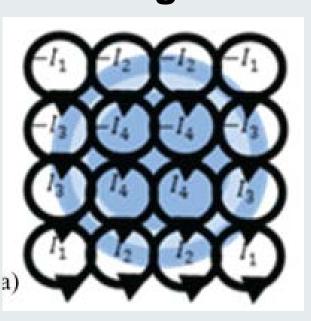
Coil E field

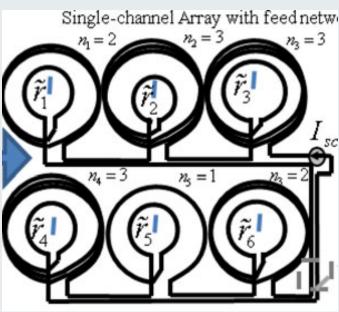
- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Optimal dosage
 - Spatial distribution

Wide Variety of Coil Designs

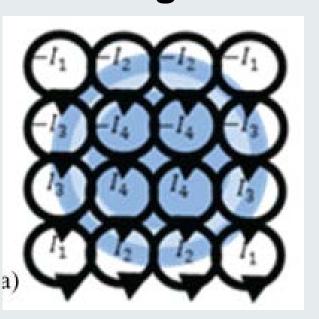


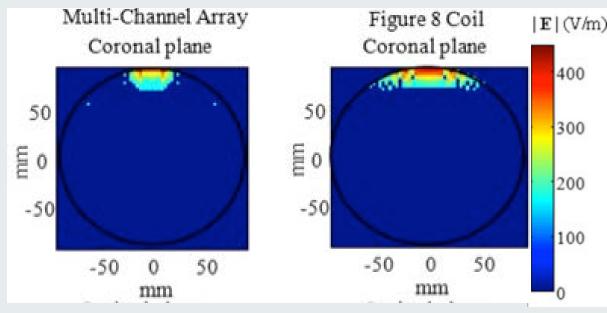
Wide Variety of Coil Designs


Wide
Variety of
E-field
Spatial
Spread



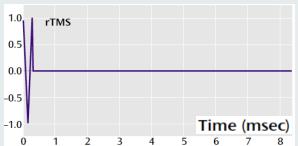
Focality/Depth Tradeoff of 61 Coils

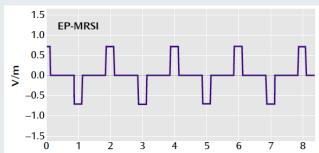




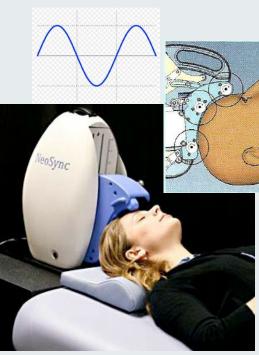
- Single source multi-coil array
- Each loop is neighbored by a loop with current in the opposite direction, permitting field cancellation

- Single source multi-coil array
- Each loop is neighbored by a loop with current in the opposite direction, permitting field cancellation
- Engineering challenges in implementation

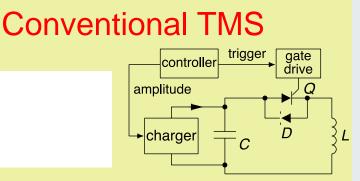


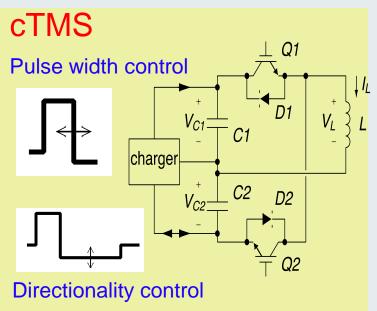

- Cervel Neurotech Deep Shaped-Field repetitive transcranial magnetic stimulator (DSF-rTMS)
 - NCT01431001

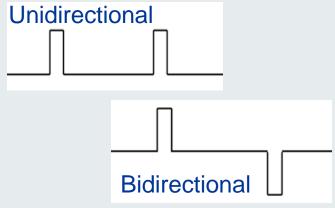
- Tal Low Field Magnetic Stimulation (LFMS)
 - NIMH-RAPID, NCT01654796



- Cervel Neurotech Deep Shaped-Field repetitive transcranial magnetic stimulator (DSF-rTMS)
 - NCT01431001


- Tal Low Field Magnetic Stimulation (LFMS)
 - NIMH-RAPID, NCT01654796


- NeoSync EEG Synchronized TMS
 - NCT01370733



- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Optimal dosage
 - Spatial distribution
 - Temporal characteristics
 - Pulse shape

- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Optimal dosage
 - Spatial distribution
 - Temporal characteristics
 - Pulse shape
 - Train parameters
 - » Frequency, duration, directionality

Low Frequency Right versus High Frequency Left for Depression

	L-rTMS		R-rTMS		Odds Ratio			Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		М-Н,	Fixed, 9	5% CI	
Höppner 2003	5	10	3	10	6.8%	2.33 [0.37, 14.61]	2003					
Fitzgerald 2003	3	20	4	20	15.5%	0.71 [0.14, 3.66]	2003			-	-	
Stern 2007	4	10	6	10	16.4%	0.44 [0.07, 2.66]	2007			•		
Fitzgerald 2007	3	15	2	11	8.4%	1.13 [0.15, 8.21]	2007		_	-	_	
Rossini 2008	21	32	24	42	32.5%	1.43 [0.55, 3.71]	2008			-	-	
Fitzgerald 2009	7	16	5	11	15.2%	0.93 [0.20, 4.37]	2009			-	-	
Eche 2012	4	6	4	8	5.2%	2.00 [0.22, 17.89]	2012		_	<u> </u>		
Total (95% CI)		109		112	100.0%	1.15 [0.65, 2.03]				•		
Total events	47		48									
Heterogeneity: Chi ² = 2	2.51, df =	6(P = 0)).87); l ² =	0%				<u> </u>			-	
Test for overall effect:	Z = 0.47 (1	P = 0.6	4)					0.01	0.1	1	10	100
								Favo	ours L-rT	MS Fav	ours R-	rTMS

- 8 Randomized Controlled Trial, 249 patients
- No detectable difference between low or high frequency
- Implications for practice as low frequency has lower seizure risk than high frequency

Chen et al. Psychiatry Research. 2013

- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Optimal dosage
 - Optimal patient selection
 - Other indications
 - Anxiety Disorders
 - » OCD, PTSD
 - Addictions
 - Cognitive enhancement
 - » TBI

Future Indications Under Investigation: PTSD

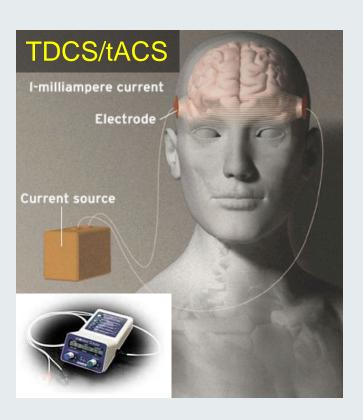
Forest plot showing effect size calculated as Hedges *g* for TMS on PTSD symptom scales.

Study	Effect size	CI lower	CI upper	
Cohen (low)	0.73	-0.36	1.82	-
Cohen (high)	1.84	0.64	3.04	-
Boggio (right)	3.78	2.32	5.25	-
Boggio (left)	2.68	1.47	3.88	→
Watts	1.99	0.92	3.06	-
Pooled	2.67	1.11	4.23	

Both low and high frequency effective

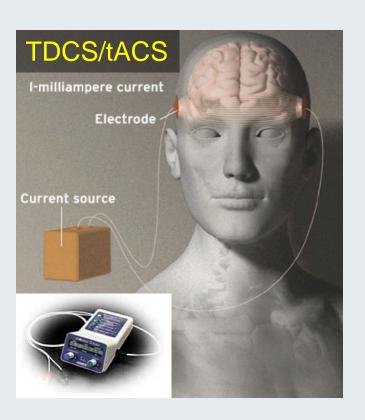
-1 0 1 2 3 4 5 6 Effect size

CI = confidence interval.



- Benefits
- Risks
- Critical knowledge gaps and needs for future work
 - Optimal dosage
 - Optimal patient selection
 - Concomitant therapies
 - Pharmacological
 - Nonpharmacological/behavioral

Non-Invasive Neuromodulation in Development for Psychiatric Treatment


Benefits

Evidence for antidepressant effects

Non-Invasive Neuromodulation in Development for Psychiatric Treatment

- Benefits
- Risks
 - Excellent safety profile
- Critical knowledge gaps and needs for future work
 - Mechanisms of action and optimizing dosimetry in space and time

Are we asking the right question?

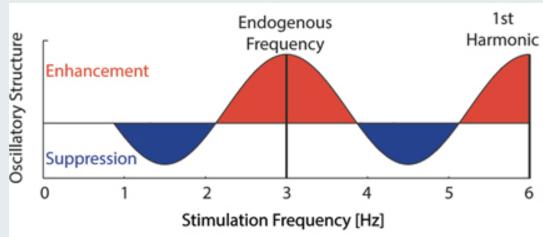
HOW DOES IT WORK?

Extracellular Currents

Endogenously Generated (

Neural oscillations – epiphenomenon or signal?

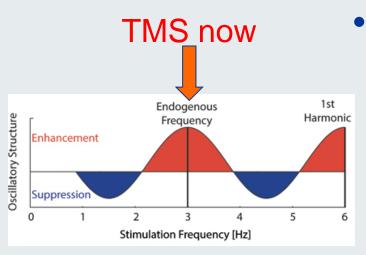
Emerging role of abnormal neural oscillations in psychiatric disorders



Are we asking the right question?

Extracellular Currents

Endogenously Generated (Exogenously Applied



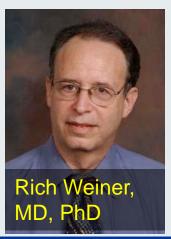
Conclusions

- Spatial maps of neurocircuitry underlying disorders have guided spatial targeting for depression, but
- Temporal targeting is presently lacking, but of great potential impact
 - Understanding the interaction between endogenous neural dynamics underlying psychiatric disorders and exogenously applied electrical currents represents a key knowledge gap in the development noninvasive neuromodulation for psychiatric disorders.

"Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning."

Winston S. Churchill, The Bright Gleam of Victory November, 10, 1942. Mansion House, London.

Acknowledgements


Brain Stimulation Engineering Lab Noninvasive Neuromodulation Neuroscience Neurocognitive Research Lab

Andrew Krystal, MD, PhD
Simon Davis, PhD
Michael Koval, PhD
Stefan Goetz, PhD
David Murphy, MS
Chris Sikes-Keilp, Jonathan
Young, Pam Smith, Mark Mayo,
Lis Bernhardt

ECT Team: Drs Mankad, Moore, Dennis, Adams; ECT Nursing

Williams Ward Attendings and Nursing

- R01MH091083 (PIs: Lisanby/Peterchev)
- R01 MH060884 (PI: Lisanby)
- U01 MH084241 (Pls: Kellner and Lisanby)
- K01 AG031912 (PI: Luber, Mentor: Lisanby)
- R21 EB00685 (Pls: Lisanby & Peterchev)
- Brain & Behavior Foundation (Lisanby),
 Stanley Foundation (Lisanby/Husain)