

The use of genomic databases to support early drug discovery projects

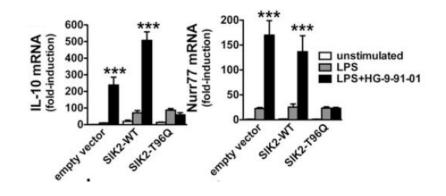
Sally John

Deriving Drug Discovery Value from Large-Scale Genetic Bioresources.

Workshop 22nd March 2016

Human genetic data can support decision making in target prioritization and validation

Translational


Salt Inducible Kinase inhibitors for the treatment of immune mediated disease

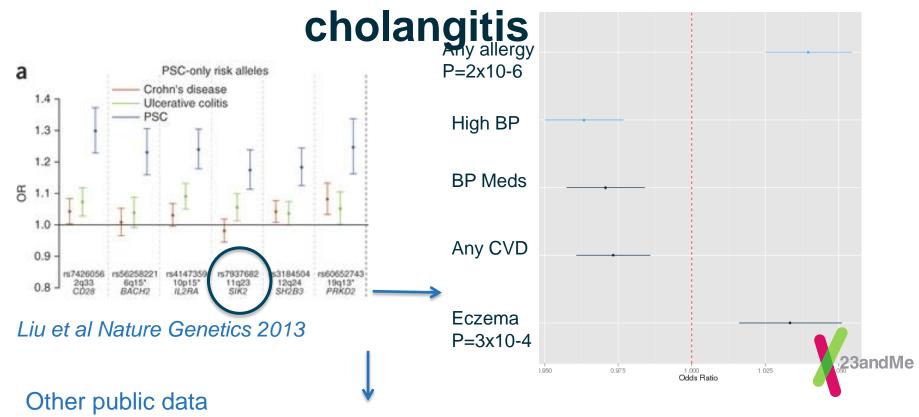
Serine threonine kinases: 3 isoforms (SIK1, SIK2, SIK3)

SIK2 in the immune system

Attenuates LPS-induced TNFa secretion and anti-CD3-induced IL-2 secretion

Enhances LPS-induced IL-10 production

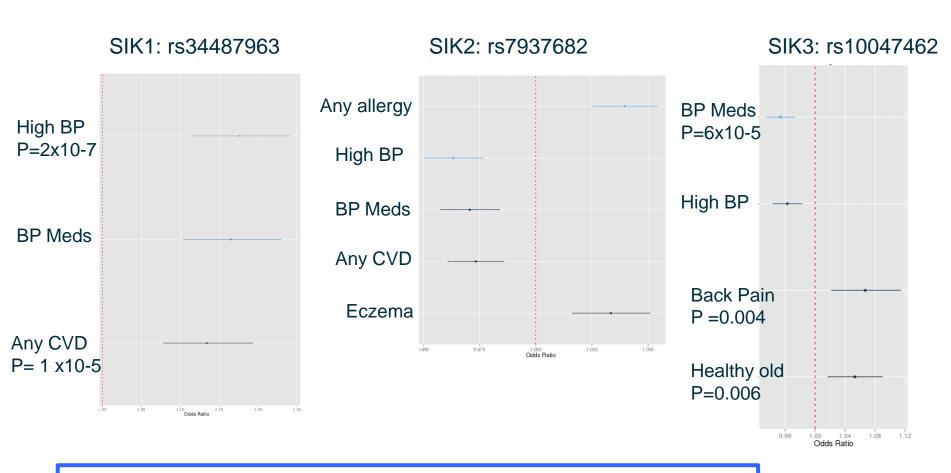
Clark et al PNAS 2012 109: 16986-91


Are there any human genetic data that suggests....

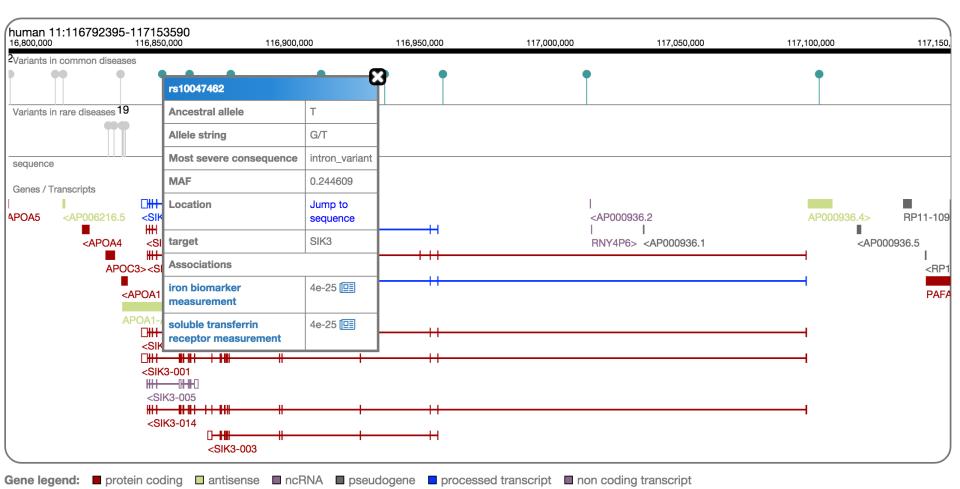
SIK2 has an immune function?

SIK1 SIK2 and SIK3 are associated with potential safety outcomes?

SNPs in SIK2 have a published association with primary sclerosing



Rs7937682 is associated with CVD in the CARDIOgramplusC4D study p = 0.002 OR ~0.97 G allele


SNPs in all 3 SIK isoforms associated with high blood pressure and CVD

Sample sizes range from 38 – 98K cases and ~200K controls

SNPs in SIK3 have multiple effects

Associations with triglyceride levels: SIK3 or APOC3?

The available human genetic data for the SIK genes

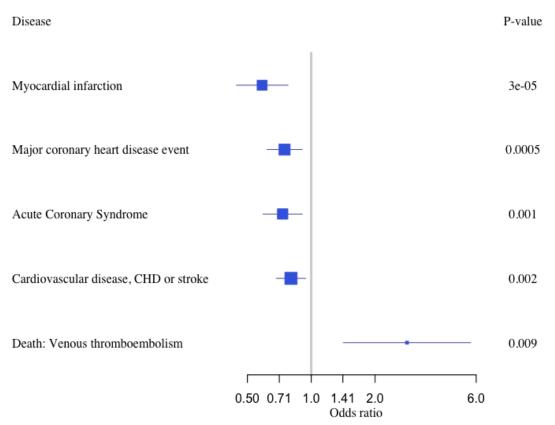
- May support inhibition of SIK2 for immune disease indications ✓
- Supports potential safety concerns for metabolic affects.
- Suggests selective SIK2 inhibition may be important ✓
- However, these data require replication
- Doesn't prove causal gene or direction of effect.

Functional coding variants may offer more insight

Outline of Industry Partnership for Human Genetics (IPHG) proof-of-concept study

Selection of ~50 target genes of interest

a) Early targets of shared interest among IPHG partners


Comprehensive assessment of LoF and GoF and enrichment in Finns across target gene

- a) Query phenotypic data following **specific hypotheses** based on each individual target of interest
- b) Association analyses of distinct alleles across the entire phenotypic spectrum using a **PheWAS (phenome-wide association study)** approach.

Example results: LoF variant in PCSK9 and disease endpoints in health registers

PCSK9

Association analysis of **Proprotein convertase subtilisin/kexin type 9** PCSK9 LoF variant p.R46L (rs11591147; MAF in Finns 0.0397) with 228 quantitative measurements, 169 disease endpoints, and drug usage in 69 medication categories

LoF variant in PCSK9 and modifiable intermediate endpoints

P-value Variant allele Summary of main PCSK9 p.R46L associations: LDL-cholesterol calculated (mmol/l) 5.49E-79 Assoc. with lower levels Total cholesterol (mmol/l) 6.89E-57 Assoc. with lower levels 3.61E-46 Assoc. with lower levels Apolipoprotein B (g/l) 3.5 Ratio HDL/Total cholesterol 3.20E-40 Assoc. with higher levels Ratio ApoB/ApoA1 1.28E-38 Assoc, with lower levels 3.0 3.69E-24 LDL-C measured (mmol/l) Assoc. with lower levels Hazard ratio and 95% C 2.5 2.0 1.5 -> support for PCSK9i efficacy 1.0 0.8

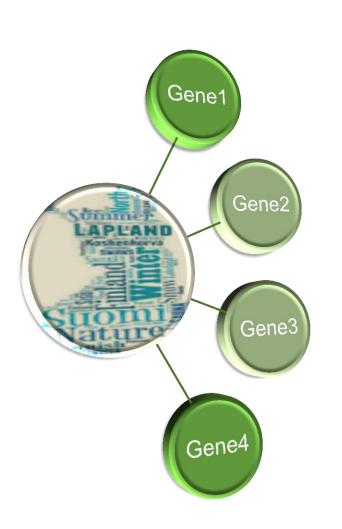
Sarwar et al. ERFC, JAMA 2009

110 130 150 170 190 210 230

Are there any potential side effects from natural PCSK9 inhibition?

Top associations for PCSK9 p.R46L in prescribed medication category:

	•		Allele		# Individuals								
			Α	В	Users	Non-users	Users total /	MAF	OR (95% CI)	Additive	Info	Beta	SE
ATC	Drug category				AA/AB/BB	AA/AB/BB	Non-users total			p-value			
C10A	LIPID MODIFYING AGENTS, PLAIN	rs11591147	G	Т	5955/344/4	9997/960/24	6304/10982	0.04	0.60(0.53-0.68)	3.60E-19	1	-0.56	0.06
6C	PSYCHOLEPTICS AND PSYCHOANALEPTICS IN COMBINATION	rs11591147	G	T	652/73/2	15300/1231/25	728/16558	0.04	1.42(1.13-1.80)	0.008	1	0.33	0.12
C10B	LIPID MODIFYING AGENTS, COMBINATIONS	rs11591147	G	Т	82/1/0	15870/1303/28	84/17202	0.04	0.23(0.05-1.10)	0.009	0.87	-1.77	0.98
R03B	OTHER DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES, INHALANTS in ATC	rs11591147	G	T	3069/280/9	12882/1024/18	3360/13926	0.04	1.18(1.03-1.34)	0.012	1	0.17	0.07
C01A	CARDIAC GLYCOSIDES	rs11591147	G	Т	456/24/0	15496/1280/28	481/16805	0.04	0.64(0.42-0.95)	0.015	0.99	-0.47	0.21
C02A	ANTIADRENERGIC AGENTS, CENTRALLY ACTING	rs11591147	G	Т	203/29/0	15749/1275/28	232/17054	0.04	1.64(1.12-2.40)	0.023	1	0.47	0.19


Causes of hospitalization for 34 Finns homozygote for PCSK9 p.R46L:

ICD group	Variant	# homozygotes	Frequency in homozygotes	# FINRISK individuals	Frequency in FINRISK	P-value	OR (95% CI)
OTHER PSYCHOSES (ICDv9)	1:55505647	3	8.8	219	1.1	0.008	7.84 (1.53-25.24)
Other diseases of upper respiratory tract (ICDv8)	1:55505647	6	17.6	1488	7.6	0.062	2.31 (0.79-5.58)
Neuroses, personality disorders and other nonpsychotic mental disorders (ICDv8)	1:55505647	3	8.8	493	2.5	0.063	3.48 (0.68-11.14)
Pregnancy with abortive outcome (ICDv10) Other diseases of upper respiratory tract (ICDv10)	1:55505647 1:55505647	_	8.8 11.8	545 939	2.8 4.8	0.08 0.096	3.15 (0.62-10.07) 2.44 (0.63-6.86)

-> evidence for potential PCSK9i safety issues?

In summary

Getting a complete picture of the role of allelic variation on target genes of interest is critical to improving success in early drug discovery

Acknowledgements

23andMe

Linda Yu

Chao Tian

Eisai

Nadeem Sarwar

Janna Hutz

Mary Pat Reeve

Broad Institute

Mark Daly

Daniel McArthur

Eric Minikel

Aarno Palotie

FIMM, University of Helsinki

Aarno Palotie

Mervi Kanunnen

Biogen

Aaron Day-Williams

Paola Bronson

Christine Loh

John Carulli

Pfizer

Nan Bing

Cliona Malony

Serena Scollen

Merck

Robert Plenge

Heiko Runz

14