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Evolution in Earthquake Engineering

1994 Northridge

Traditional Seismic Design:

Equivalent lateral loads applied to
simplified model of building system

Intuitive basis in physics, but design
requirements are highly prescriptive



H.F. Reid’s (1910) “Elastic Rebound” Theory
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Earthquake Faults in California
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Performance-Based Engineering Framework

 Collapse & Casualties

| Consequence
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| Building Damage
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Seismic Response of Tall Buildings
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Low-Cost Seismic (Base) Isolation for Housing
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Earthquake Simulator (Shake Table)

Outdoor Shake Table

Plan Dimension: 8 x 12 meter
EQ Stroke: +/- 0.75 meter




dish sliding isolators
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Wood-Frame House Risk Mitigation
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Wood-Frame House Risk Mitigation

Mean Loss | IM [% Replacement]
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One-Story, 2ft Cripple Walls, San Francisco Site
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Loss versus Earthquake Intensity

How Much Could | Save In “The
Big One” If | Retrofit My House*?
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San Francisco Bay Area M7.0 Earthquake Testbed
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M7.0 Hayward simulation (LLNL-SW4)
1.84 M individual buildings

Parcel-level inventory enhanced by Al tools
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Building Evaluations
- HAZUS building configurations
- OpenSees MDOF (story shear) models
- 25 pairs of ground motions
- HAZUS story-level damage functions .
- modeling uncertainty o R 25%

* DesignSafe HPC (Stampede2)
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San Francisco Bay Area M7.0 Earthquake Testbed

High Resolution Modeling: Parcel-level resolution enables unprecedented
guantification of engineered interventions for policy level decisions
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San Francisco Downtown Recovery
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Urban Risk Forecasting

qoopon 4 = Predicted risk

» ~
. i‘\ by LT
o

‘ 1991w|_|_j;vén:c'ohry

Predicted risk assuming
increased quality of all
new construction

300,000

20%

i EXPECTED
REDUCTION
IN 15 YEARS

200,000 5

100,000 o

Mumber of buildings sustaining heavy damage

18980 1985 2000 2005 2010 2015 2020 2025 2030

Urban Growth & Evolving Risk
(Kathmandu, Nepal)

3
" 203

2020 Inventory (est) Lallemant, D., Wong, S., Morales, K., Kiremidjian, A. (2014), “A Framework and
Case study for Urban Seismic Risk Forecasting,” Proc. 10NCEE, Los Angeles.



pom—

T

:
i
1
!
:

* Collapse & Casualties

* Direct Financial Loss
Predicted risk

* Downtime

Predicted risk assuming
increased quality of all
new construction
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