The Influence of Sources of Indoor Fine Particulate Matter on the Characterization of Exposure and Evaluation of Health Effects

ANDREA R. FERRO CLARKSON UNIVERSITY

NASEM INDOOR PM EXPOSURE WORKSHOP

SESSION II: INDOOR SOURCES OF INDOOR PARTICULATE MATTER

14 APRIL 2021

TECHNICAL PAPER

ISSN 1047-3289 J. Air & Waste Manage. Assoc. **46**: 98-126 Copyright 1996 Air & Waste Management Association

Indoor Particles: A Review

Lance Wallace

National Exposure Research Laboratory, U.S. Environmental Protection Agency, Warrenton, Virginia

Wallace, 1996 *JAWMA*

ABSTRACT

This paper reviews studies of particle concentrations and sources in homes and buildings. Three major studies of indoor and outdoor concentrations in U.S. homes are Most studies showed poor correlations of personal exposures with outdoor concentrations. However, for those studies with seven or more repeated measurements, longitudinal regressions on exposures of individual subjects showed much

Wallace (1996) findings:

- major sources of indoor PM were smoking, cooking & "unexplained"
- "personal cloud" observed but not yet investigated
- personal PM_{2.5} exposures poorly correlated with outdoor PM_{2.5}, except for longitudinal regressions for individuals

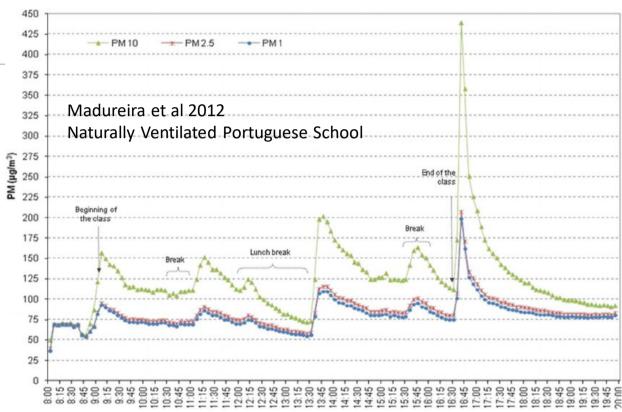
What have we learned in the past 25 years?

Some relevant research questions

- 1. How does the indoor environment impact the level and composition of indoor PM_{2.5}?
 - (sources, occupants, building operation, pollutant/microbial cycling)
- 2. How does indoor $PM_{2.5}$ impact human health (acute, chronic) and how should we assess health risks of indoor $PM_{2.5}$?
- 3. What are the structural influences on disparate PM_{2.5} exposures across communities?
- 4. What are the best approaches to mitigate indoor $PM_{2.5}$ exposures?

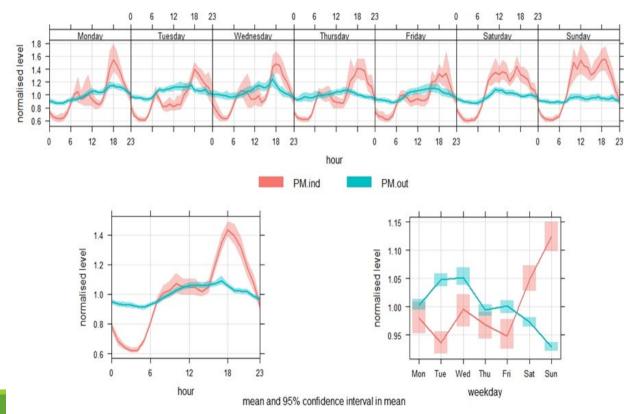
Sources of indoor fine particulate matter

Already discussed today:


- Outdoor sources of indoor PM_{2.5} & disparities in associated exposures
- Indoor to outdoor transport & chemical transformations
- Indoor sources of indoor PM_{2.5}: cooking; SOA; third-hand smoke, indoor microbiome
- Partitioning of SVOCs and inorganic gases (affects PM_{2.5} composition)

Other major indoor $PM_{2.5}$ sources:

- Other combustion sources: smoking; candles & incense; heating
- Shedding and resuspension (chemical & biological components)


Indoor PM sources are often episodic

- •Indoor sources often result in short term, high concentration pulse (e.g. cooking, smoking, human activity, SOA event)
- •Some indoor sources are more continuous (e.g., stove pilot, heating source)

Time (hour)

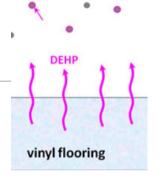
Indoor and outdoor PM_{2.5} temporal patterns can be very different

Weekly and diurnal trends of indoor and outdoor PM_{2.5}

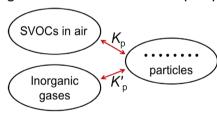
Indoor-outdoor PM_{2.5} data for 25 homes during heating season in Rochester, NY (Ferro et al, 2021, in revision)

Acute health impacts from short-term PM_{2.5} exposure

- Increased mortality associated with short-term (<24 h) increased PM_{2.5} concentrations (Lu et al., 2015; Lin et al., 2017a;b)
- More evidence is needed to assess morbidity from short-term exposure to PM_{2.5} and specific constituents associated with PM_{2.5}
- Need better indoor PM_{2.5} exposure estimates to assess acute health effects (e.g., myocardial infarction) from short-term exposures

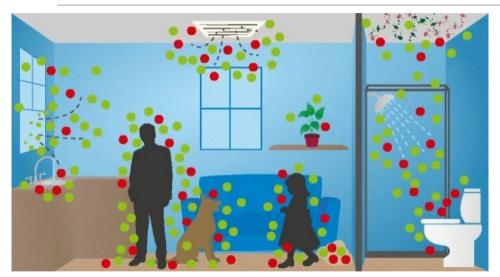

Indoor particles may be more toxic than outdoor particles

- Oeder et al., 2012 found inflammatory response and allergic reactions higher for PM₁₀ collected indoors versus outdoors (6 schools, Munich)
- Long et al. (2001) found the proinflamatory response in rat alveolar macrophages higher for indoor particles than outdoor particles (14 residences in Boston)
- Happo et al., 2013, 2014 found cytotoxic effects on mouse macrophages higher for particles collected indoors versus outdoors (one residence in Finland)

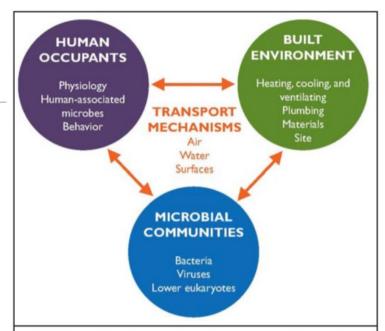

Chemical composition of indoor PM_{2.5}

- From both outdoor and indoor sources
- Enriched in occupant organics
 - squalene
 - cholesterol
 - fatty acids
- Enriched in chemical additives
 - plasticizers
 - flame retardants
 - surfactants

DEHP = di(2-ethylhexyl) phthalate

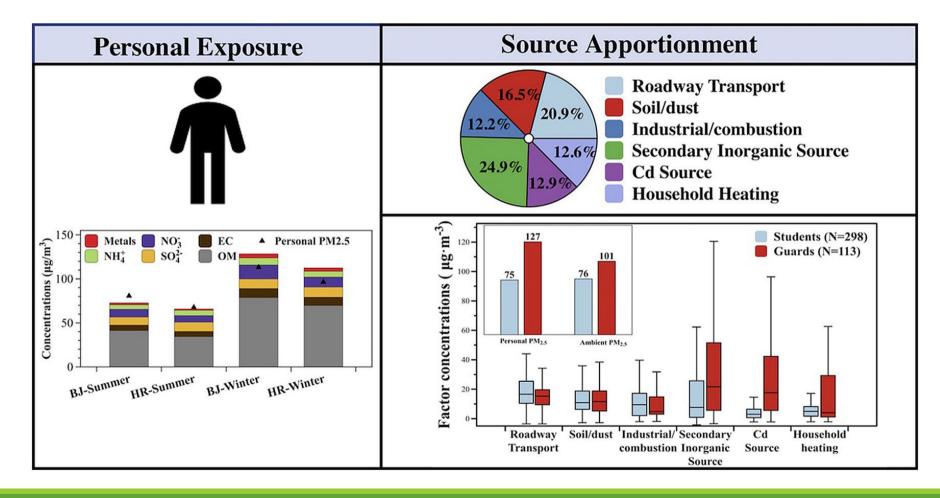


Partitioning of volatiles between vapor phase and PM



- Changes with temperature and RH
- Changes with outdoor-to-indoor transport
- Chemical transformations
 - Oxidation (e.g., O₃ + organics in PM)
 - Acid-base/partitioning reactions (e.g. NH₄NO₃ → NH₃ + HNO₃)

Indoor microbial bioaerosols



Sources of beneficial (green) and detrimental (red) microbial bioaerosols: humans, pets, plants, plumbing systems, heating, ventilation, and air-conditioning systems, mold, resuspension of settled dust, and outdoor air

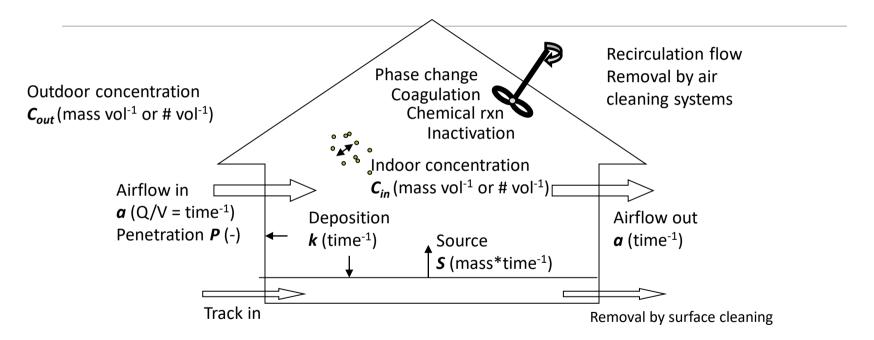
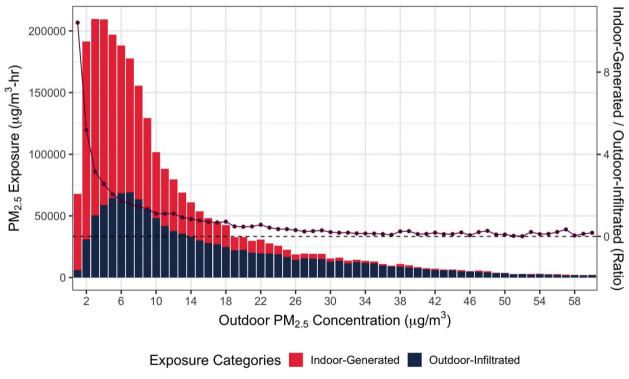


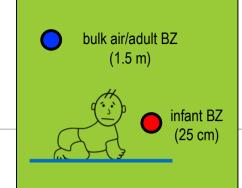
FIGURE 1 The formation, dynamics, and functions of microbiomes in built environments are shaped by complex interactions of factors related to the characteristics of a building, its human occupants, and the microbial communities associated with both.

NASEM, 2017

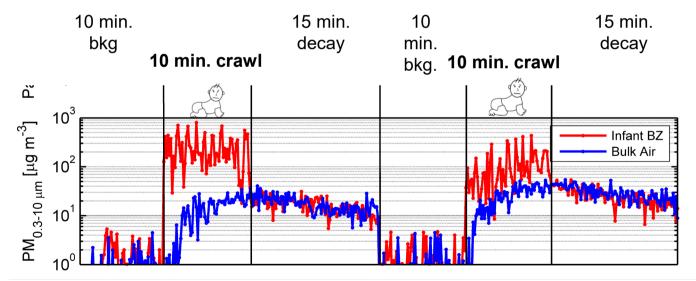
Material balance approach using well-mixed assumption for indoor PM_{2.5} is often reasonable

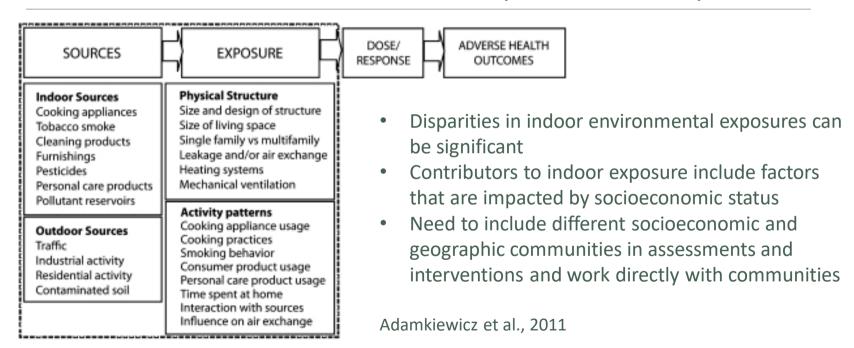


Exposure to Indoor Generated and Outdoor-Infiltrated PM


Used citizen-based PurpleAir monitors used to obtain I/O PM_{2.5} at 41 residential houses and 50 public/commercial buildings

Estimated mean site-specific $\mathbf{F}_{inf} = \mathbf{0.26} \pm \mathbf{0.04}$ (low end of range reported by Chen and Zhao, 2011 *Atmos Environ*)


Below PM_{2.5} ~30 μg/m³ indoor sources contributed substantially to personal exposures


Vertical Variability

Contributors to indoor exposure disparities

Can ambient air quality standards be used to assess indoor air pollutants?

- Ambient PM_{2.5} strongly correlated with health effects
- Most PM_{2.5} exposure occurs indoors
- Since only some of the ambient PM makes it indoors, applying ambient health-based standards assess indoor PM_{2.5} would underestimate risk
- Need to separate indoor-generated vs outdoor-infiltrated PM_{2.5}

US National Ambient Air Quality Standards

PM _{2,5}	primary	1 year	12.0 µg/m ³
	secondary	1 year	15.0 µg/m ³
	primary and secondary	24 hours	35 μg/m ³

https://www.epa.gov/criteria-air-pollutants/naaqs-table

NEED STANDARDS SPECIFIC TO INDOOR PM

Use of DALYs for evaluation

of indoor PM_{2.5}

Current GBD Study evaluates ambient PM_{2.5}, household air pollution from use of solid fuels for cooking (HAPs) and ambient ozone pollution

Expand to other indoor exposures?

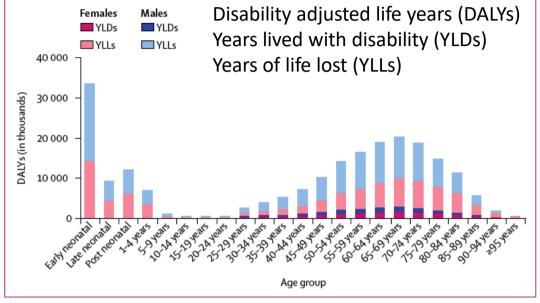
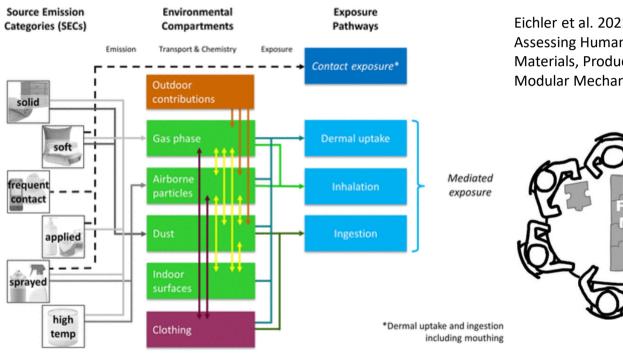
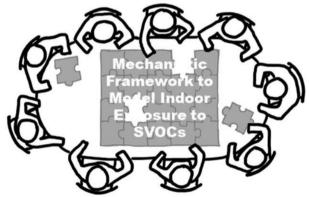


Figure 2: Composition of attributable global DALYs by YLLs and YLDs, age group, and sex, 2019


Air pollution—Level 2 risk

Global Burden of Disease Study 2019: http://ghdx.healthdata.org/gbd-2019


Summary In 2019, air pollution was the leading Level 2 risk factor for DALYs among all environmental and occupational risks. It contributed to 213 million (95% UI 189–240) DALYs and 6.67 million (5.90-7.49) deaths in 2019.

Definition Air pollution includes ambient particulate matter pollution (PM₂₅), household air pollution from the use of solid fuels for cooking (HAP), and ambient ozone pollution.

Modular mechanistic framework for modeling exposures

Eichler et al. 2021 *Environ. Sci. Technol.*Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A
Modular Mechanistic Framework

Summary & Research Needs

- Indoor PM_{2.5} highly variable, temporally and spatially, and often not strongly correlated with outdoor PM_{2.5}
- Composition of indoor PM_{2.5} very different than outdoor PM_{2.5}
- Need to separate indoor-generated vs outdoor-infiltrated PM_{2.5} for epidemiological studies
- Update human activity pattern data (e.g., using GPS enabled devices)
- Advance metrics and approach for assessing and communicating indoor PM_{2.5} health impacts
- Increase community-engaged research to understand disparities in PM_{2.5} exposure and develop mitigation strategies

Abbatt and Wang, 2020