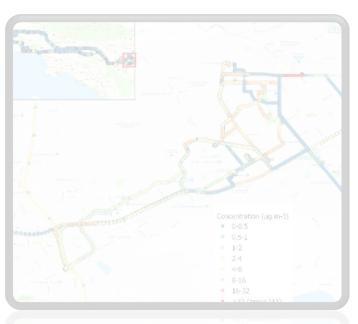


Presentation Overview

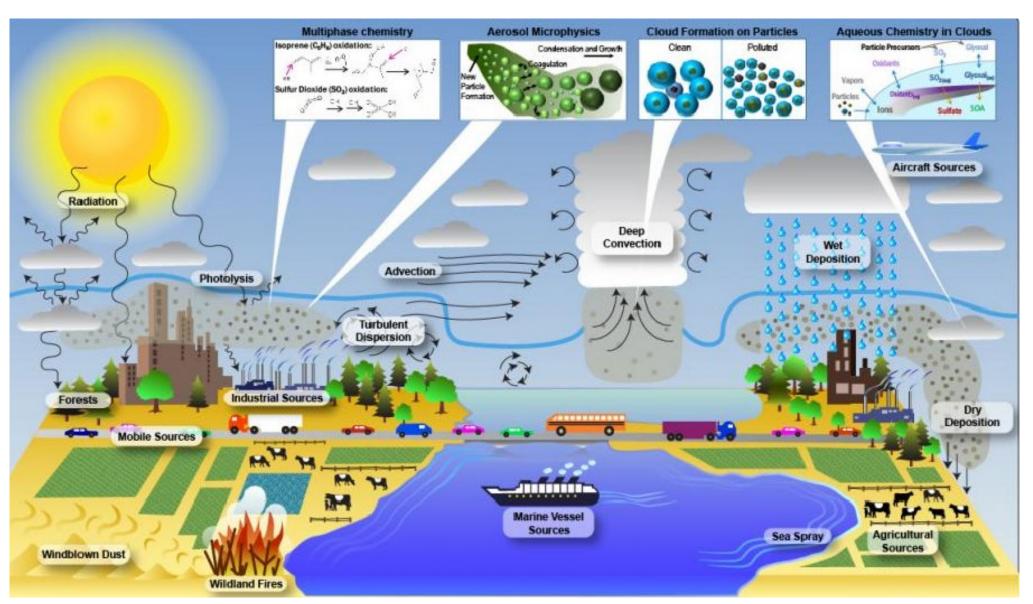
1. PM_{2.5} Sources: Regulatory vs. Community Perspectives

2. PM_{2.5} Exposure Modeling: Are We Getting It Right?


3. Emerging Challenges for Source Mitigation

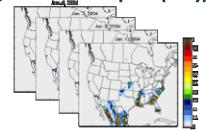
Presentation Overview

1. PM_{2.5} Sources: Regulatory vs. Community Perspectives

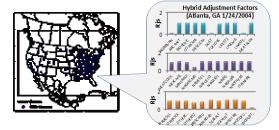

2. PM_{2.5} Exposure Modeling: Are We Getting It Right?

3. Emerging Challenges for Source Mitigation

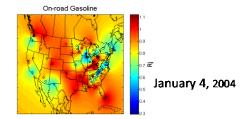
Diverse Origins of PM_{2.5}

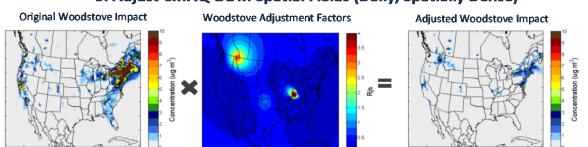


Hybrid Source Apportionment Modeling



We leverage <u>source apportionment</u> to attribute ambient pollutant concentrations back to the source. Model fusion with observations reduces concentration bias, improves source impacts.


1. CMAQ-DDM Source Impacts (Daily)


3. Spatial Interpolation of Adjustment Factors (Kriging)

4. Temporal Interpolation of Adjustment Factors

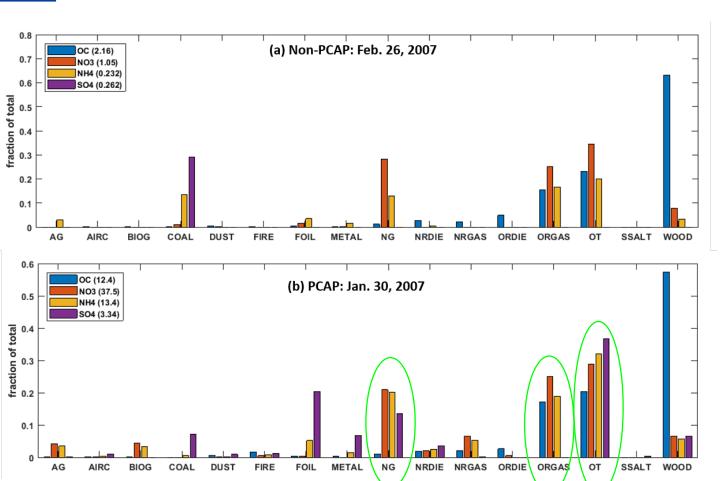
5. Adjust CMAQ-DDM Spatial Fields (Daily, Spatially Dense)

$$X^{2} = \sum_{i=1}^{N} \left[\frac{\left[\left(c_{i}^{obs} - c_{i}^{sim} - \sum_{j=1}^{J} SA_{i,j}^{base}(R_{j} - 1) \right) \right]^{2}}{\sigma_{i,obs}^{2} + \sigma_{i,SP}^{2}} \right] + \Gamma \sum_{j=1}^{J} \frac{ln(R_{j})^{2}}{\sigma_{ln(R_{j})}^{2}}$$

agricultural activities and livestock operations aircraft biogenics coal combustion dust fires (wild, prescribed) fuel oil combustion meat cooking metals processing natural gas combustion non-road diesel non-road gasoline non-road others on-road diesel on-road gasoline others other combustion solvents sea salt wood burning

Ivey et al., *Geosci Mod Dev*, 2015

PCAP Source Apportionment



Source-oriented hybrid approach provided specific origins of secondary pollution during 2007 wintertime *persistent cold air pools* (PCAPs).

- Gasoline mobile and natural gas combustion are top sources during PCAP
- Others is highest source:
 - Refineries
 - Smelters
- Recommendation: reduce emissions from sources of nitrate precursors during PCAPs

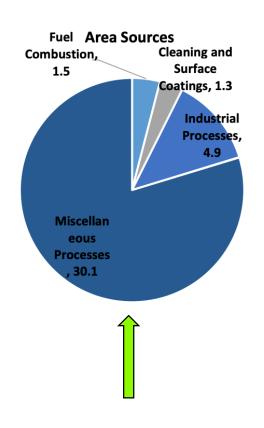
Ivey et al., *Atm Env*, 2019; *FESE* 2016

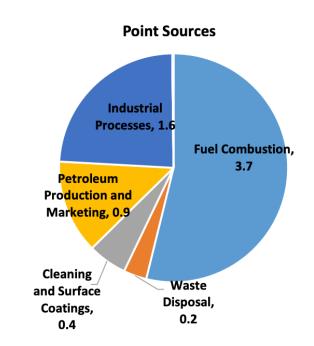
California Statewide PM_{2.5} Sources

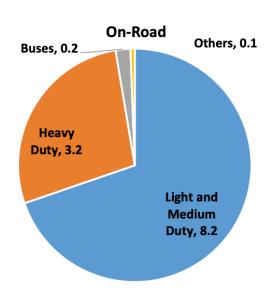
Top primary $PM_{2.5}$ sources include residential fuel combustion, windblown fugitive dust, and managed burning and disposal.

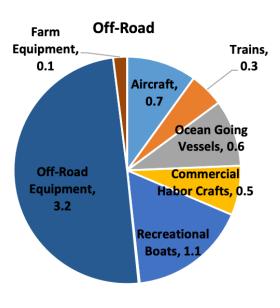
2016 SIP Emission Projection Data
2020 Estimated Annual Average Emissions

STATEWIDE

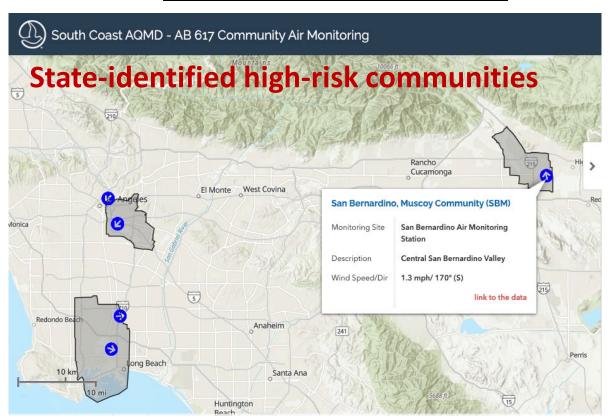

STATIONARY SOURCES	TOG	ROG	СО	NOX	SOX	PM	PM10	PM2.5	NH3
FUEL COMBUSTION	133.3	28.2	245.5	190.6	25.8	35.3	29.2	25.8	19.7
WASTE DISPOSAL	2249.1	57.1	4.7	4.7	1.5	68.3	20.5	2.9	30.9
CLEANING AND SURFACE COATINGS	255.0	161.0	0.1	0.1	0.0	3.2	3.1	2.9	0.5
PETROLEUM PRODUCTION AND MARKETING	484.9	87.8	12.1	4.9	4.6	3.5	2.3	2.1	0.3
INDUSTRIAL PROCESSES	68.2	61.2	36.4	65.6	26.5	214.3	111.6	44.5	12.0
* TOTAL STATIONARY SOURCES	3190.4	395.2	298.8	266.0	58.5	324.7	166.7	78.3	63.4
AREAWIDE SOURCES	TOG	ROG	СО	NOX	sox	PM	PM10	PM2.5	NH3
SOLVENT EVAPORATION	407.2	358.6	-	-	-	0.0	0.0	0.0	179.1
MISCELLANEOUS PROCESSES	1323.7	215.1	643.4	60.6	4.0	2206.0	1194.8	244.8	337.9
* TOTAL AREAWIDE SOURCES	1730.9	573.7	643.4	60.6	4.0	2206.0	1194.8	244.8	516.9
MOBILE SOURCES	TOG	ROG	СО	NOX	sox	PM	PM10	PM2.5	NH3
ON-ROAD MOTOR VEHICLES	233.7	210.6	1535.2	494.5	4.6	62.7	61.5	27.1	32.1
OTHER MOBILE SOURCES	278.4	246.8	1978.6	600.2	13.1	32.4	31.3	28.0	0.5
* TOTAL MOBILE SOURCES	512.1	457.4	3513.8	1094.7	17.8	95.1	92.7	55.1	32.6
GRAND TOTAL FOR STATEWIDE	5433.5	1426.3	4456.0	1421.3	80.3	2625.8	1454.3	378.2	612.9


Southern California PM_{2.5} Sources




Top primary $PM_{2.5}$ sources include cooking and paved road dust.

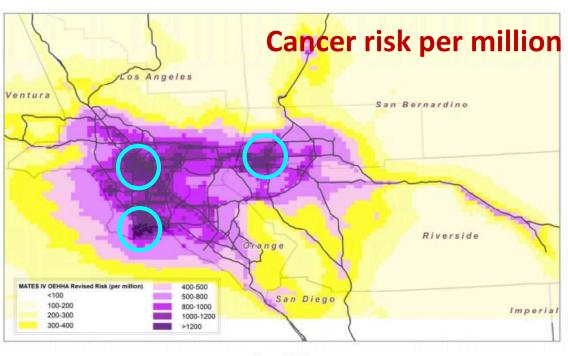
2017 PM_{2.5} Emissions in the South Coast Air Basin (Tons per Day)

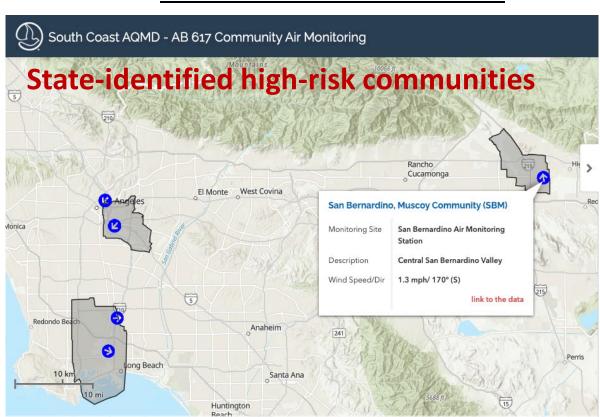


Cancer Risk in Southern California

Multiple Air Toxics Exposure Study (MATES) IV identifies diesel $PM_{2.5}$ as the dominant driver of cancer risk

Phase 1 AB 617 Communities



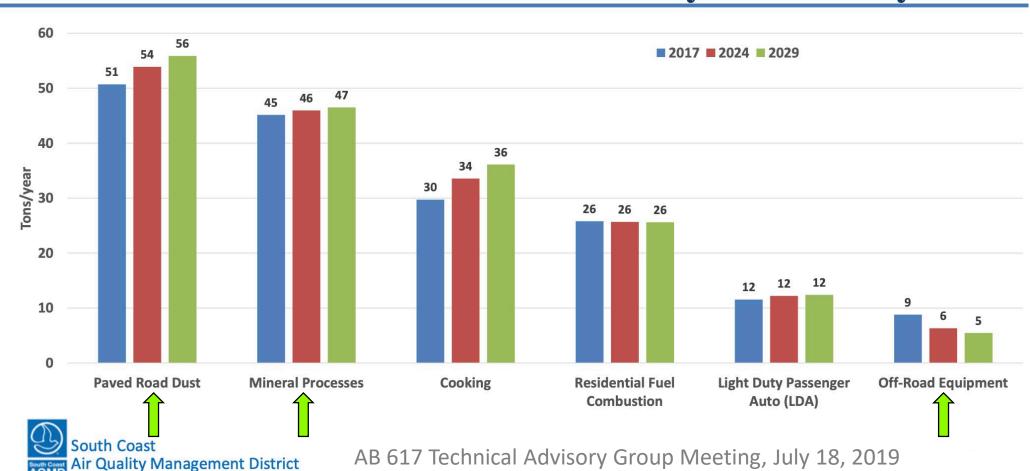

Figure ES-7
MATES IV Modeled Air Toxics Risks Estimates Using Updated OEHHA Methodology

Environmental Justice: AB 617 Communities

Assembly Bill 617 requires targeted air monitoring and emissions reductions in overburdened communities

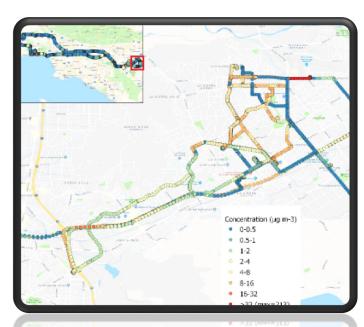
Phase 1 AB 617 Communities

San Bernardino/Muscoy: truck idling, truck traffic, cement plant, BNSF railyard, auto body shops


Community Concerns

San Bernardino/Muscoy

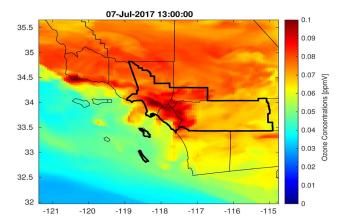
Top 5 Sources of PM2.5 Emissions in the San Bernardino and Muscoy Community



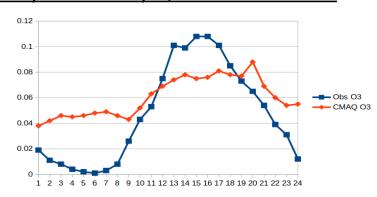
Presentation Overview

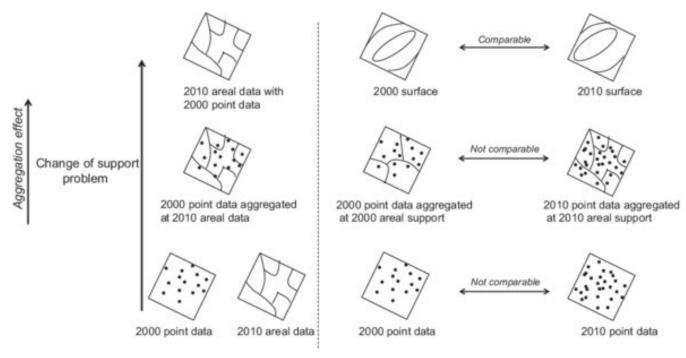
1. PM_{2.5} Sources: Regulatory vs. Community Perspectives

2. PM_{2.5} Exposure Modeling: Are We Getting It Right?


3. Emerging Challenges for Source Mitigation

Modeling Weaknesses for Exposure Studies?




Spatial and temporal biases may confound acute exposure estimates. The change of support problem also confounds individual exposure assessments.

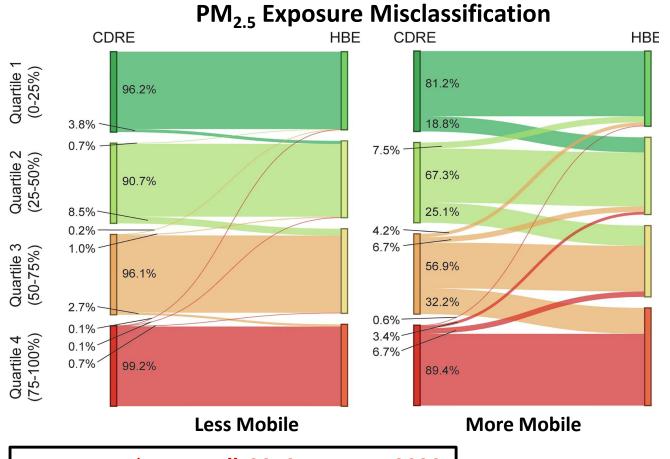
Ozone in SoCAB July 7, 2017

Hourly Ozone July 7, 2017 at Fontana

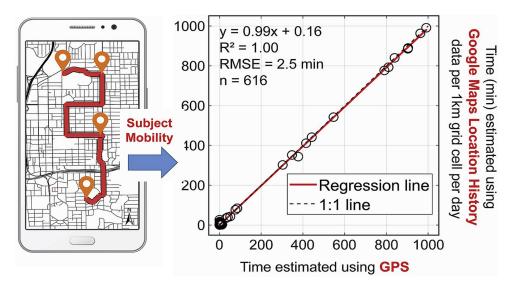

Gelfand, Zhu, and Carlin, *Biostatistics*, 2001; Rongerude and Haddad, Housing Policy Debate, 2016

Ambient PM_{2.5} Indoors

"...Epidemiological studies of the link between outdoor air pollution and health generally do not effectively address the often-substantial exposure to air pollutants of indoor origin..."


- Very small and very large ambient particles are removed once crossing the building envelope
- PM_{2.5} infiltration factors range from 0.3 to 0.8
- Assessment of how global mortality might shift with changes in outdoor PM_{2.5} concentrations...neglects the role of buildings as attenuators and modulators of exposure

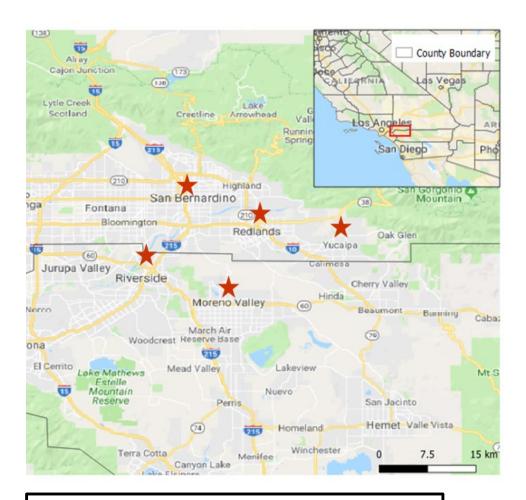
Human Mobility Confounds Exposures?



Higher mobility leads to higher potential for exposure misclassification. Cellular data is relatively effective for characterizing individual and population scale mobility.

Yu, Ivey et al., *Env Poll*, 2019; *Env Int*, 2020

Google Maps Location History



- Based on call detail records (CDR)
 Individuals with greater daily mobility are at greater risk for exposure misclassification
- Google Maps Location History data is an *effective* way to track human mobility

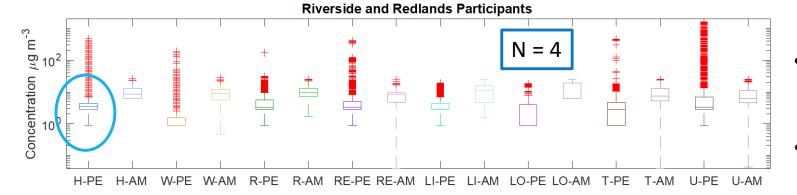
Personal PM_{2.5} Exposure Pilot Study

To what extent does human mobility impact personal exposure disparities?

Do, Velasquez, Ivey et al., *J Aer Sci*, 2021

- Pilot CBPR field campaign: March 10th April 14th 2019
- Participants from Moreno Valley, Redlands, Riverside, San Bernardino, Yucaipa
- Collected personal exposure data with accessible wearable monitors (15-sec) for 18 individuals for 7 days each
- Collect position with GPS data logger (5-sec)

Applied Particle Technology, St. Louis, MO


PM_{2.5} Exposure Disparities

San Bernardino residents are more at risk in their homes, despite high participant mobility.

- ME: home, work/uni, restaurant, retail, leisure indoor, leisure outdoor, transient
 - Microenvironment exposures were highly variable among participants with > 50% data recovery.

San Bernardino Participants																
ω																
concentration μ g m ⁻³) †	#	*	‡	+++++++	#	-		##### +	N =	5	#	\Box		#
O																
	H-PE	H-AM	W-PE	W-AM	R-PE	R-AM	RE-PE	RE-AM	LI-PE	LI-AM	LO-PE	LO-AM	T-PE	T-AM	U-PE	U-AM

City	Median Household Income	Poverty Rate
Moreno Valley	\$63,572	19.9%
Redlands	\$72,523	13.6%
Riverside	\$65,313	15.6%
San Bernardino	\$43,136	28.4%
Yucaipa	\$63,657	12.3%

Do, Velasquez, Ivey et al., *J Aer Sci*, 2021

Human Mobility & Air Pollution Exposure

Despite high mobility, disparities in exposure still exist. Home-based hypothesis is corroborated, but non-home acute exposures are also important.

- Inland Empire pilot exposure study builds a foundation for larger exposure assessments
- High-resolution wearable optical particle counters and GPS data loggers enable precise personal exposure measurements
- Exposures related to personal behaviors and the visitation of high-risk non-residential points of interest should be continuously monitored

	Redlands and Riverside	San Bernardino
# of Data Points (% Recovery)	387,219 (73%)	301,428 (72%)
	Time Spent (%)	
Home	66	70
Work or University	23	9
Restaurant	3	1
Retail	2	7
Leisure Indoor	2	4
Leisure Outdoor	< 1	<1
Transient	< 1	4
Unclassified	3	5

Do, Velasquez, Ivey et al., J Aer Sci, 2021

Presentation Overview

1. PM_{2.5} Sources: Regulatory vs. Community Perspectives

2. PM_{2.5} Exposure Modeling: Are We Getting It Right?

3. Emerging Challenges for Source Mitigation

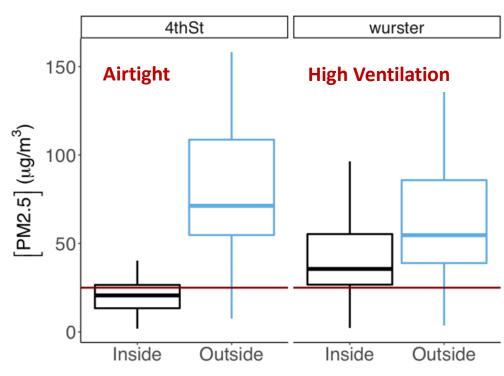
Emerging Challenges for Source Mitigation

- We should potentially consider a new way to approach $PM_{2.5}$ source mitigation to more effectively address exposure disparities.
- Requires a deep understanding of confounding effects, historical inequities, as well as present-day experiences for those most negatively impacted.

Unintentional Disparities

VS.

Intentional Disparities



Unintentional Exposure Disparities

Wildfires are an emerging air pollution crisis given changing climate.

Using IoT Sensing to Determine the Resilience of Buildings to Wildfire Pollution

Intentional Exposure Disparities

Where you live and the local decisions on land use have grave consequences. Inland Empire residents live in close proximity to commercial and industrial sources.

Immediate Action Items

Recent legislation (CA Senate) has been introduced to prevent zoning and development that harms historically burdened communities.

Connie Leyva @SenatorLeyva · Feb 17

BREAKING: I just introduced #SB499 to ensure that disadvantaged communities in California no longer bear a disproportionate burden of pollution and environmental hazards. Proud to work with @LCJandA on this important legislation!

Senator Leyva Introduces Legislation to Protect California

SACRAMENTO – Continuing her advocacy and work to expand environmental justice protections for communities across California,...

S sd20.senate.ca.gov

Senator Leyva: "SB 499...will ensure that disadvantaged communities no longer bear a disproportionate burden of pollution and environmental hazards."

Nature 2020: "Those who live in such areas will continue to take a disproportionate hit unless *land-use equity* is made a priority in governance."

Take Home Messages

- 1. Air pollution modeling has paved the way for understanding sourcereceptor relationships and associated health impacts at the population scale.
- 2. Misclassification and confounders complicate our understanding of exposure disparities and implications for health effects and mitigation for underserved communities.
- 3. Building envelopes are critically important to consider for future exposure-health assessments that rely on ambient source impact data.
- 4. Mitigation of exposure disparities will require a commitment to sustainable and equitable zoning and development.

Thank you

Cesunica Ivey AQMEL Principal Investigator

cesunica@ucr.edu

dr_sun_shine

www.iveylab.com

Bridging Regional Ecology, Aerosolized Toxins, & Health Effects

