Secondary Aerosol Formation of Fine Particulate Matter in the Indoor Environment

Michael Waring, PhD

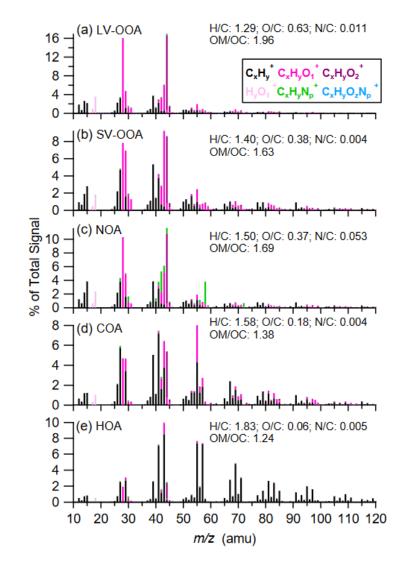
Drexel University
College of Engineering
Civil, Architectural and Environmental Engineering

Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches Workshop Wednesday, April 14, 2021

National Academies of Sciences, Engineering, and Medicine

Outline of talk

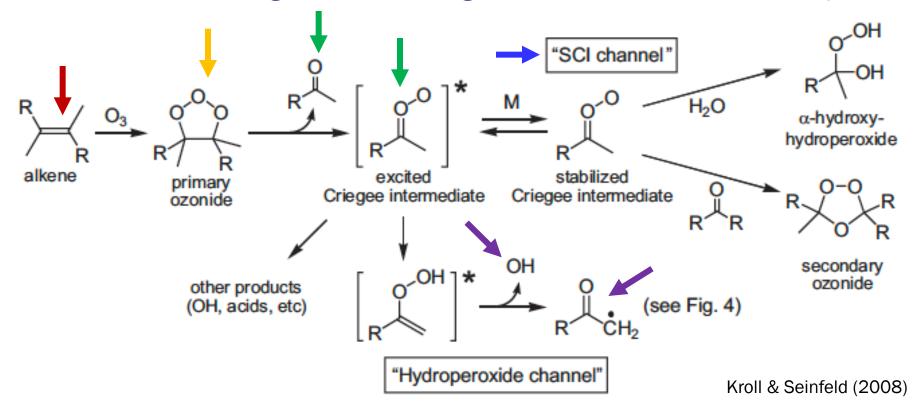
- SOA basic information and historical investigation
- SOA modeling as tool to improve our understanding
- SOA emission strengths and future research needs


Organic Aerosol (OA) types

OA "factors"

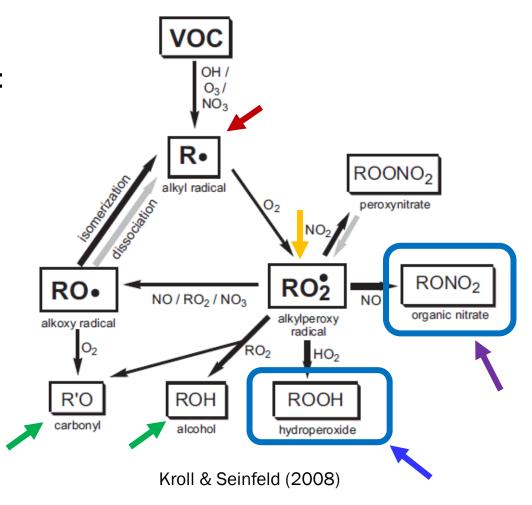
- Hydrocarbon-like (HOA)
- Biomass-burning (BBOA)
- Cooking (COA)
- Oxygenated (OOA), SV-OOA and LV-OOA

Source processes


- Primary (POA)
 - Combustion, cooking
 - Corresponds with HOA, BBOA, COA
- Secondary (SOA)
 - Products of gas-phase reactions
 - Corresponds with SVOOA and LVOOA

Sun et al. (2011)

Alkene ozonolysis initial steps


• Follows the so-called Criegee mechanism, generates OH, R, SCI, and other products

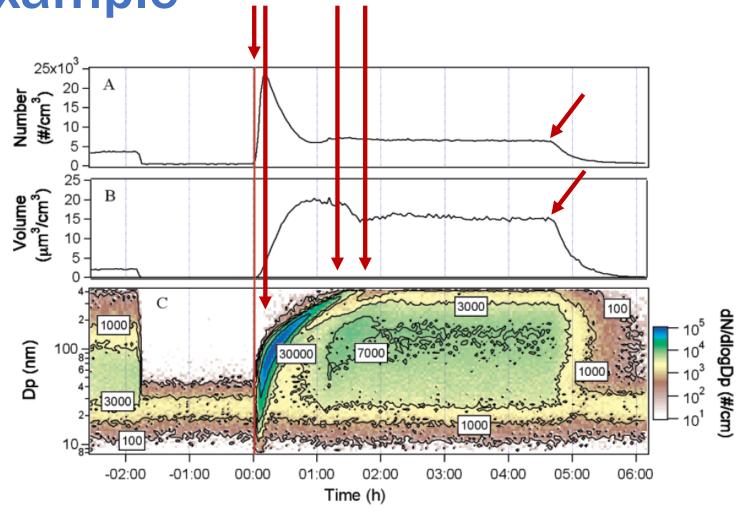
VOC oxidation starts complex mechanism

- Reactions with oxidants lead to multistep processes, which form many products, such as:
 - Carbonyls (=0)
 - Alcohols (—OH)
 - Carboxylic acids ((=0)OH)
 - Peroxides (—OOH)
 - Organic nitrates (—ONO₂)

Lower volatility products with large functionality partition to form secondary organic aerosol (SOA)

Indoor SOA formation

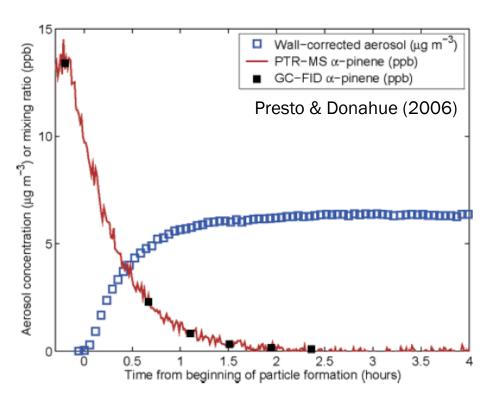
- Most studies on indoor SOA in chambers or test rooms
 - Ozone + common terpene (Weschler and Shields, 1999; Youssefi and Waring, 2014, 2015; many others)
 - Ozone + consumer product (Sarwar et al., 2003; Destaillats et al., 2006; Singer et al., 2006; many others)
- Scanning mobility particle sizers (SMPS) had difficulty separating background PM from SOA
- Aerosol mass spectrometers (AMS) produce spectra for interpretation (but can be messy in field studies)
- SOA formation models used to estimate indoor SOA concentrations and explore uncertainties



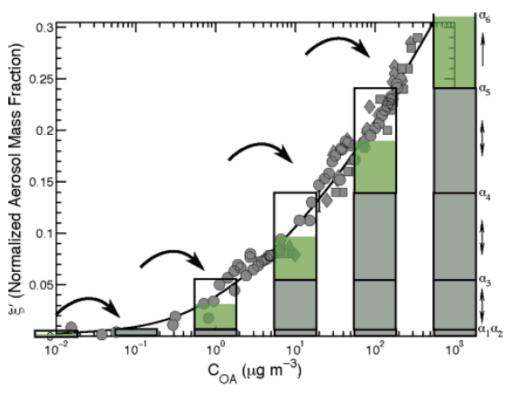
SOA formation example

SOA experiment run to steady state (Destaillats et al., 2006)

- Air freshener operated continuously in a chamber at 3 ACH
- Ozone supply = 63 ppb started at red line on plot (time zero)
- Nucleation occurred at onset of experiment after ozone started
- Size distribution then stabilized
- Gas-to-particle partitioning of products afterward
- Steady number and volume until ozone supply turned off


Outline of talk

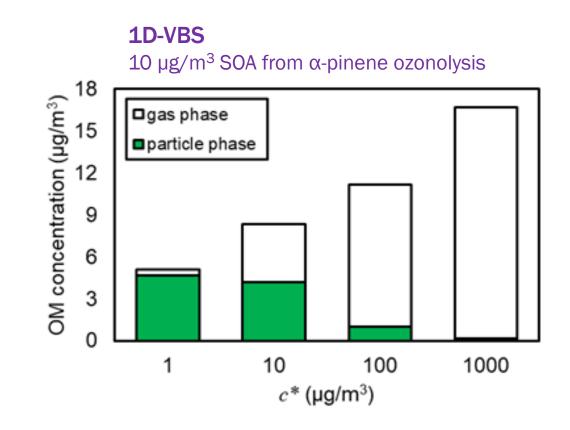
- SOA basic information and historical investigation
- SOA modeling as tool to improve our understanding
- SOA emission strengths and future research needs


Indoor SOA modeling types

- Explicit product model (Carlsaw, 2007; Carslaw et al., 2012; Kruza et al., 2020)
- Lumped product model (Youssefi and Waring, 2012; Waring 2014; Cummings and Waring, 2019; Cummings et al., 2020)
 - Simplified mechanism for oxidation reactions and products, first generation reactions only
 - VOC oxidation reaction product yields of organic matter (OM) lumped into volatility bins
 - Partitioning of all OM determined by solving gas-to-particle partitioning equations
 - All types of organic aerosol can be accommodated (e.g. outdoor OA, BBOA, OOA, HOA, indoor SOA)
 - Bulk aerosol properties can be determined easily (density, phase state, hygroscopicity)
 (IMAGES = Indoor Model of Gases, Aerosols, Emissions, and Surfaces)

Indoor SOA modeling w/ yields

Y or AMF =
$$\frac{\Delta C_{SOA}}{\Delta ROG} = \sum_{i=1}^{n} \alpha_i \left(1 + \frac{c_i^*}{C_{SOA}} \right)^{-1}$$



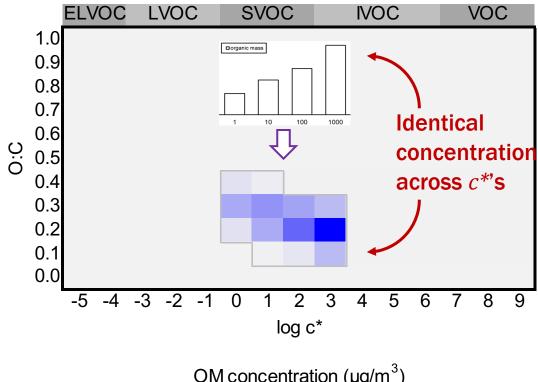
$$\alpha_i = \{0.004, 0, 0.051, 0.09, 0.12, 0.18\}$$

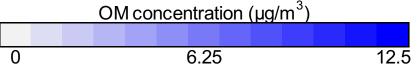
at $c_i^* = \{0.01, 0.1, 1, 10, 100, 1000 \,\mu\text{g/m}^3\}$

Indoor SOA modeling w/ 1D-VBS

- 1D-VBS organizes <u>organic matter (OM)</u> components (gas or particle) based on
 - **Volatility** using saturation conc. (c^* , μ g/m³)
- Example:
 - Organic mass ($C_{\text{OM},i}$, $\mu \text{g/m}^3$) lumped in c_i^* bins
 - Aerosol mass fraction (AMF) predicted by partitioning of $C_{\text{OM},i}$ in c_i^* for total C_{OA} (µg/m³)

$$AMF_i = \left(1 + \frac{c_i^*}{C_{OA}}\right)^{-1} \longleftrightarrow C_{OA} = \sum_i C_{OM,i}AMF_i$$




From 1D to 2D-VBS

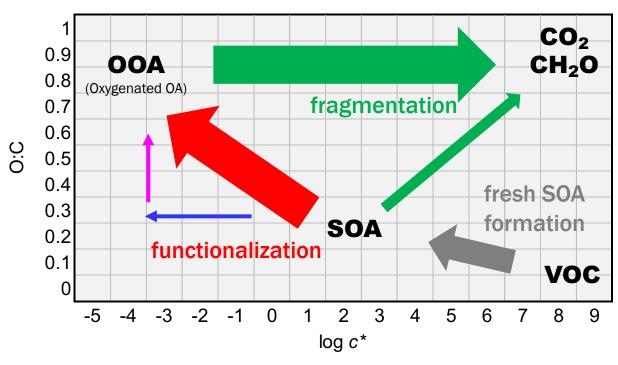
- 2D-VBS organizes <u>organic matter (OM)</u> components (gas or particle) based on
 - **Volatility** using saturation conc. (c^* , μ g/m³)
 - Oxidation degree using O:C ratio or OS_C
- Example:
 - 1D-VBS distribution spread into 0:C "dimension"
 - Partitioning calculation proceeds unchanged

$$AMF_i = \left(1 + \frac{c_i^*}{C_{OA}}\right)^{-1} \longrightarrow C_{OA} = \sum_i C_{OM,i}AMF_i$$

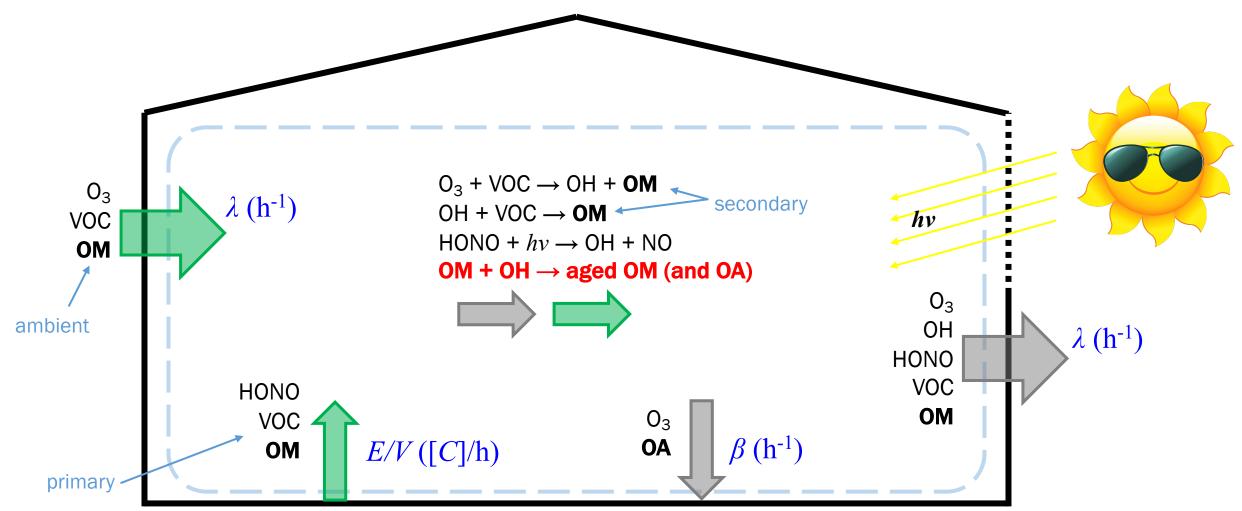
2D-VBS 10 μ g/m³ SOA from α -pinene ozonolysis

OA evolution through 2D-VBS

OM forms, then ages via 2 processes:


Functionalization

- Molecule gains oxygen-containing functional group(s)
- **Enhances** particle-phase concentration


Fragmentation

- Molecule breaks into lighter fragments
- Particle-phase molecules may evaporate into the gas phase
- **Reduces** particle-phase concentration

OM mass resides and moves in the 2D-VBS space

IMAGES framework overview

Outline of talk

- SOA basic information and historical investigation
- SOA modeling as tool to improve our understanding
- SOA emission strengths and future research needs

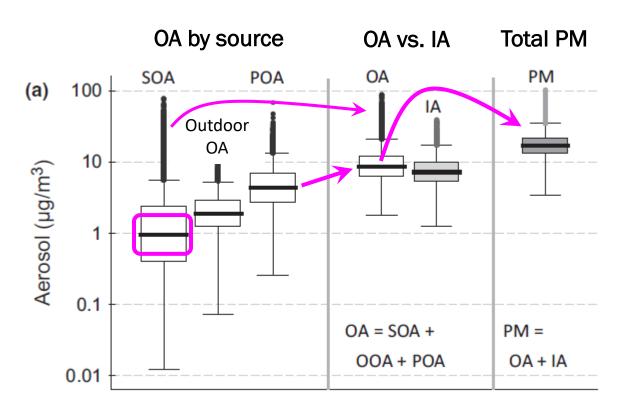
Indoor SOA concentration ranges

- Monte Carlo simulations of day-averaged SOA in typical U.S. residences (Waring, 2014)
- SOA from ozone/OH + VOCs

Lognormal distributions

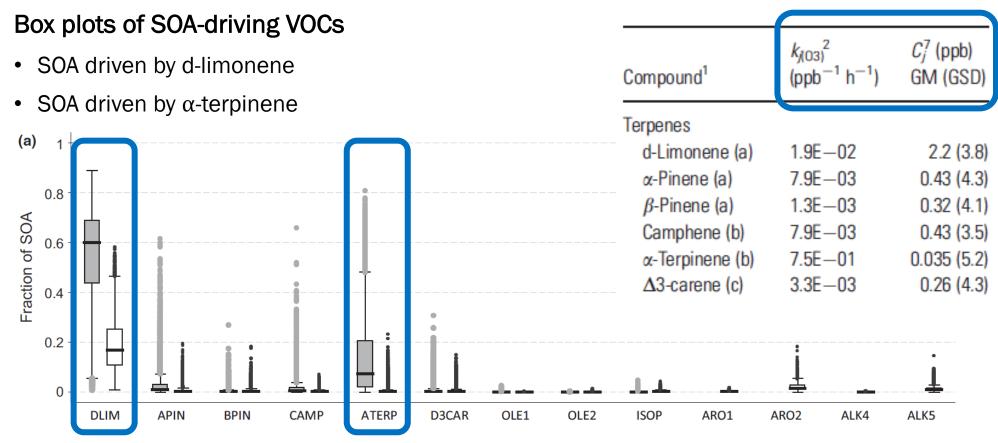
- Air exchange rates
- Deposition of ozone and PM
- Outdoor conc. of ozone, OA, IA
- Indoor emissions POA, PIA
- Outdoor conc. of 66 VOCs
- Indoor emissions of 66 VOCs

Simulated 10,000 cases
Result distributions generated

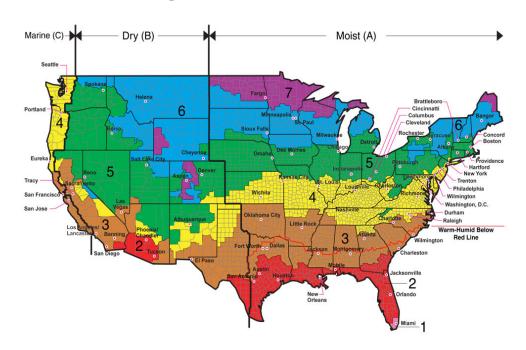

Parameter	GM	GSD	1st Percentile	99th Percentile	Source
λ (h ⁻¹)	0.75	2.1	0.135	4.14	1
β_{03} (h ⁻¹)	2.5	1.5	1.08	6.36	2, 3, 4
β_{PM} (h ⁻¹)	0.79	1.35	0.395	1.57	1
C _{03,0} (ppb)	25.5	2.04	4.91	108	5
$C_{OA,o}$ (μ g/m ³)	4.02	1.65	1.53	12.6	1, 6
- C _{IA,ο} (μg/m ³)	11.5	1.65	4.36	36.6	1, 6
$E_{POA}/V(\mu g/m^3 h)$	7.0	1.75	1.88	26.1	1, 6
$E_{PlA}/V(\mu g/m^3 h)$	2.2	1.75	0.611	8.06	1, 6
<i>C_{j,o}</i> (ppb)	Table 2 f ROG j	or 66			1, 7, 8
E _j /V (ppb/h)	Table 2 for 66 ROG j				1, 7, 8
	AM	SD			
<i>T</i> (K)	296.9	3.0	290	302	1

Indoor SOA concentration ranges

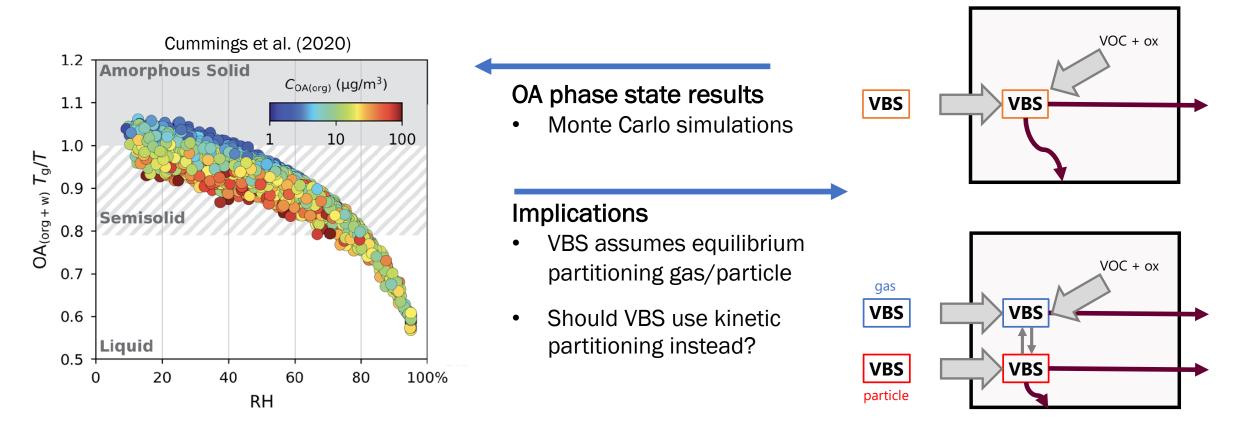
• Monte Carlo simulations of day-averaged SOA in typical U.S. residences (Waring, 2014)


Box plots of result distributions

- Much of indoor PM is OA
- Primary OA dominates OA (cooking)
- SOA typically lowest OA (med 1 μg/m³)
- SOA can dominate indoor OA & PM
 - High ozone, terpene, low AER combos


(+R) VOCs driving SOA fromation?

Monte Carlo simulations of day-averaged SOA in typical U.S. residences (Waring, 2014)

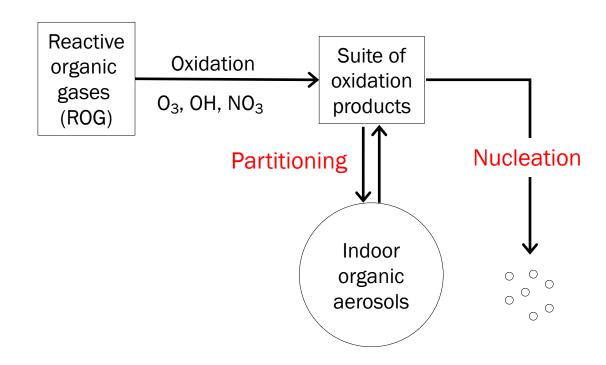

(+R) OA phase state inhibit SOA?

- Does OA phase state change enough to influence equilibrium SOA formation?
- Further residential simulations conducted using housing/VOC inputs as above, but with:
- Outdoor inputs from historical data (trends exhibited seasonally & regionally)
 - 16 representative U.S. cities
 - Outdoor T, RH (NOAA)
 - Outdoor ozone (EPA Criteria)
 - Outdoor chemically resolved PM (EPA CSN)
 - Organics: HOA, SV-OOA, LV-OOA
 - Inorganics: AN, AS, SS, BC, geological

(+R) OA phase state inhibit SOA?

Does OA phase state change enough to influence equilibrium SOA formation?

(+R) Nucleation vs. partitioning formation?

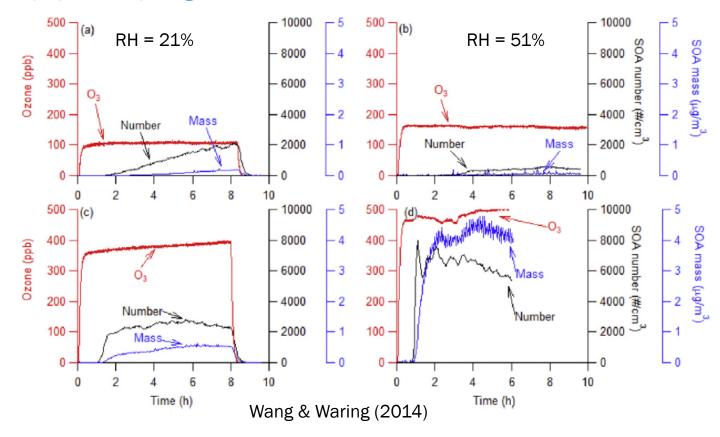

What conditions promote nucleation and/or gas-to-particle partitioning?

Experiments show:

- Nucleation common at start
- Partitioning common later

Framework for delineating?

- Ozone/VOC ratios
- Existing particle availability



(+R) Surface processes as SOA source?

How important is ozone + humans (squalene) to generate SOA formation?

Experiment w/O_3 + squalene:

- 36 L stainless steel chamber
- Steady state, well-mixed without background particles
- Air exchange rate = 5.4 h⁻¹;
- Steady O₃ of 57–500 ppb
- Initial squalene coverage
 3.9×10¹⁶ molec/cm² for 250cm²

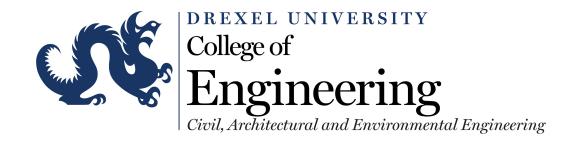
SOA emission strengths and future research needs

(+R) Mitigation for SOA?

- What are best mitigation measures for indoor SOA formation?
 - Which terpenes are most important to remove from indoor formulations?
 - How effective are standard particle filters that remove SOA?
 - What is the influence of OH producing tech (e.g. BPI or UV) on indoor SOA?

Outline of talk

- SOA basic information and historical investigation
- SOA modeling as tool to improve our understanding
- SOA emission strengths and future research needs
 - What are typical indoor SOA concentration ranges?
 - What VOCs are driving indoor SOA formation?
 - Does OA phase state inhibit SOA formation?
 - When does nucleation vs. gas-to-particle growth matter?
 - Do surface processes act as SOA sources?
 - What is the best way to mitigate indoor SOA formation?


Thank you! Questions?

Collaborators

- Bryan Cummings (PhD student, future post-doc)
- Somayeh Youssefi, Chunyi Wang, Yanan Yang, Anita Avery (PhD grads)
- Peter DeCarlo, Manabu Shiraiwa

