Mitigation of fine particulate matter exposures in schools

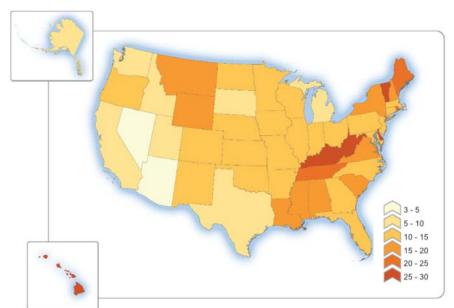
Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches

Workshop on Mitigation of Indoor Exposure to Fine Particulate Matter
National Academies of Science and Engineering

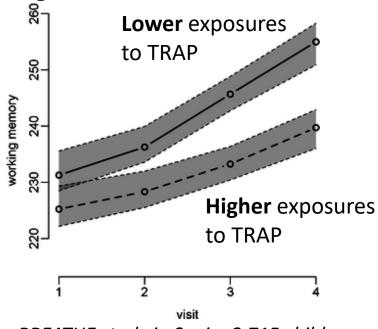
Dr. Elliott T. Gall, Ph.D.

Assistant Professor

Department of Mechanical and Materials Engineering


Air pollution and near-roadway schools

Schools are critical environment for susceptible population:

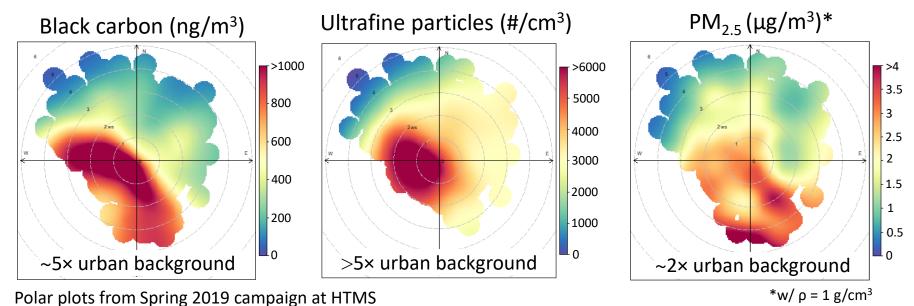

- 15% of schools (6.4 million children) < 250 m distance from major roadway¹
- Schools with higher % Hispanic, Black, Asian students have disparate exposure^{2,3}

Traffic-related air pollution (TRAP) affects student health and cognition:

- e.g., increased asthma diagnosis⁴
- Decreased working memory scores, other cognitive markers⁵

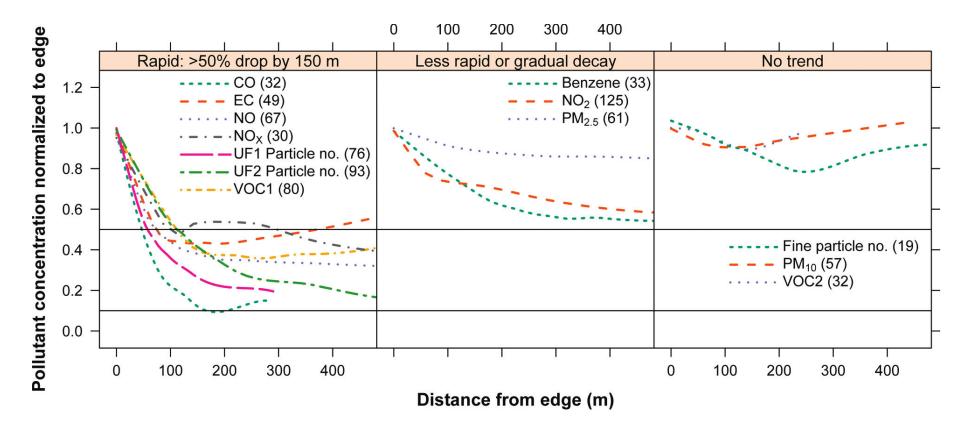
% of students attending a school within 250 m of major roadway¹

BREATHE study in Spain: 2,715 children and 10,112 tests from 39 schools.

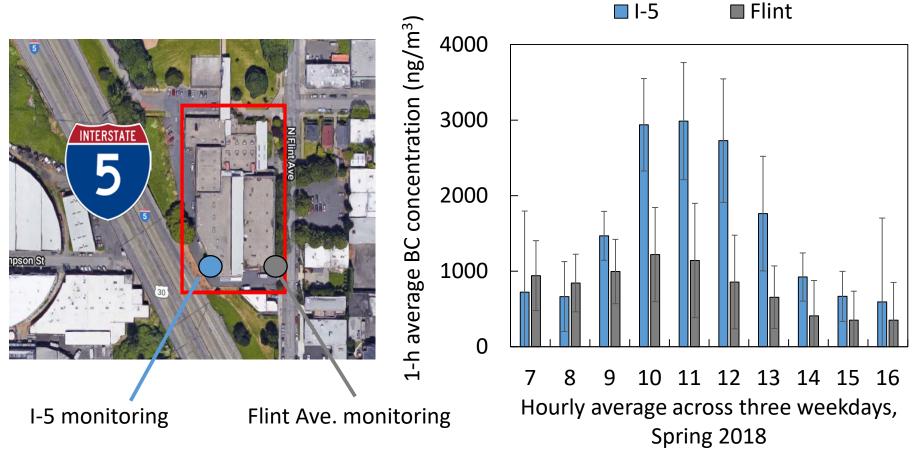

Air pollution in near-roadway schools

Near-roadway middle school **Harriet Tubman Middle School (HTMS)** in Portland, OR, USA; site of field study.

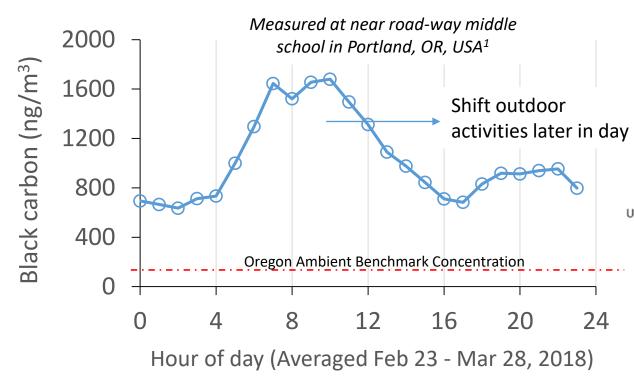
Challenges for near-roadway schools¹:


- Elevated air pollution levels
 - Temporally and spatially variant
 - Meteorology is important
- o TRAP constituents elevated, PM_{2.5} less so
 - Health impacts greater for TRAP than PM_{2.5}²
 - Standards (ASHRAE 62.1)↑ filtration if NAAQS exceeded
- Indoor + site outdoors contribute to student exposure

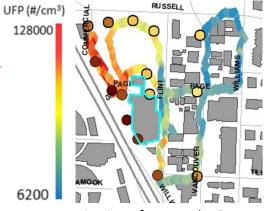
Strong spatial gradients for TRAP


- TRAP elevated above urban background within zone of ~200-500 m¹
- Zone may be 1000s of meters during nighttime²

Opportunity: leverage spatial gradient to reduce exposure



Siting outdoor air intake


- Monitoring of black carbon on two faces of Harriet Tubman Middle School¹
 - At peak periods, ↑ distance is equivalent to a ~MERV8 filter
 - Benefit is realized without energy input (due to mixing and dilution of TRAP)

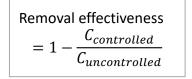
Leverage diurnal trends in TRAP

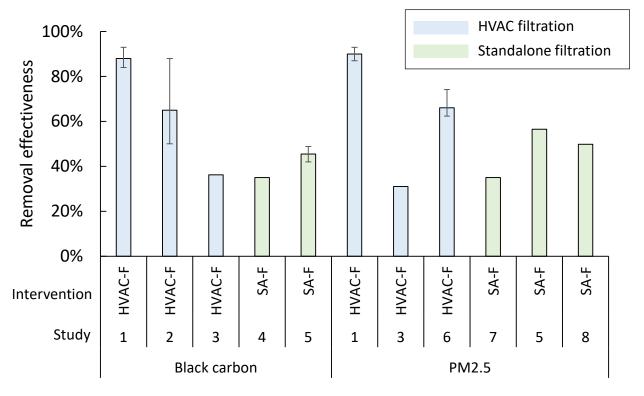
TRAP generally peak between 7 and 9 AM due to rush hour traffic²

And shift location:

Monitoring of UFP and NO₂ at near-roadway school¹

Alter timing of ventilation system³


- Test of four schools in Ottawa, ON
 - 1. Outdoor air ventilation from 5:30 6:30 AM
 - 2. Recirculation only until school starts at 8 or 9 AM
 - → Significant reductions in UFP, VOCs for schools starting at 9 AM


¹Laguerre et al., 2020, ES&T 54(19):11798-11808; ² Touma et al. J Air Waste Manage, 56, 1716–1725.

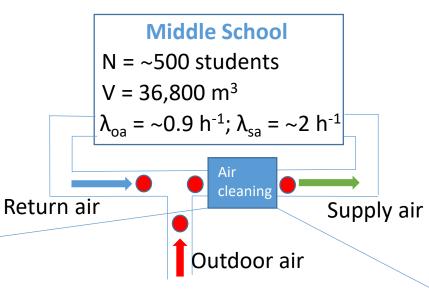
Active approaches: air-cleaning

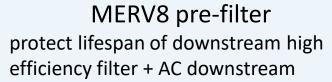
Air cleaning effectiveness for PM in **occupied** schools

- Filtration can be effective, but results are variable
- Eight studies of occupied schools w/ air cleaning intervention¹⁻⁸
 - Most common: Filtration in HVAC system (HVAC-F), standalone (SA-F) filtration

¹Polidori et al. 2013, Indoor Air 23(3): 185-195; ²McCarthy et al. 2012 Indoor Air 23:196-207; ³van der Zee et al. 2017 Indoor Air 27(2): 291-302; ⁴Scheepers et al. 2015 Environ Sci Processes Impacts 17:316-325; ⁵ Jhun et al. 2017 J Allergy Clin. Immun. 5(1): 159-159e.3; ⁶ Gao et al. 2019 Env. Res 197 Part A, 108749; ⁷Park et al. 2020 Build. Environ 167:106437; ⁸Smythe, A. 2018 Master's Thesis, Harvard University

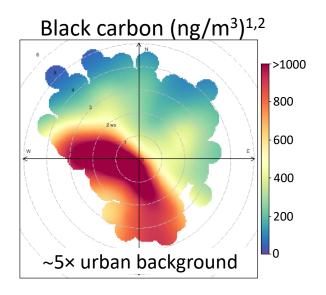
At near-roadway school in Portland, OR


Pre-renovation


Post-renovation

Air monitoring locations¹

MERV16 filter effective across broad range of particles, <10 nm - 10+ μ m



Functionalized carbon VOC and NO₂ removal, large mass required, ↑cost

Address TRAP in ventilation air

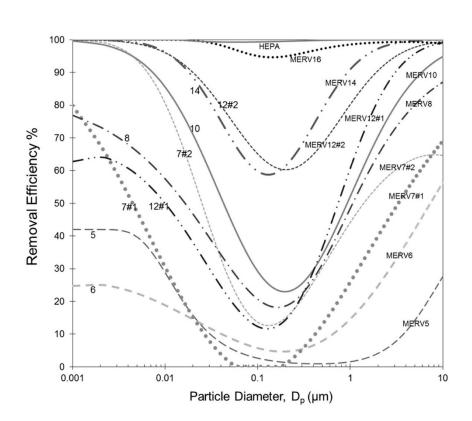
Minimum goal for near-roadway school:

• TRAP in ventilation air = to urban background w/ standard filtration

Set black carbon source in school ventilation air so that: If near-roadway (NR) = If in urban background (BG)

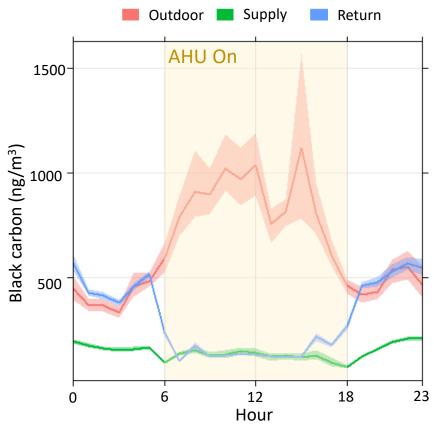
$$[(1 - \eta)\lambda_{OA}C]_{NR} = [(1 - \eta)\lambda_{OA}C]_{BG}$$

$$\eta_{NR} = 1 - \frac{C_{BG}}{C_{NR}}(1 - \eta_{BG})$$


$$\eta_{NR} = 1 - \frac{1}{5}(1 - 0.2)$$

 η = black carbon removal efficiency (-) λ_{OA} = outdoor air exchange rate (h⁻¹), = 0.85 h⁻¹ C = black carbon outdoor air concentration ($\frac{ng}{m^3}$)

 $\eta \geq 84\%$ required to make BC outdoor source similar to that of urban background w/ typical filter (at near-roadway school in Portland, OR USA^{1,2})

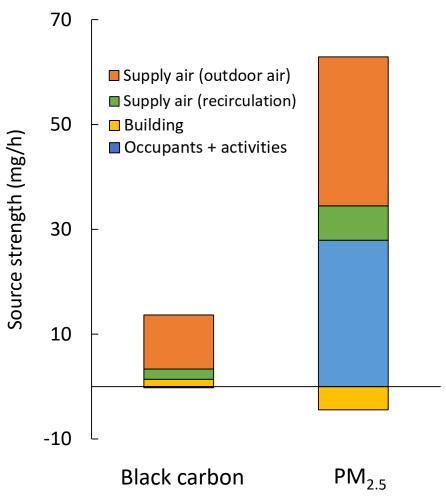

Efficacy of high-efficiency air cleaning

Predictions of size-resolved removal efficiency vs. MERV rating^{1,2}

>84% removal efficiency of fine particulate matter achievable, $f(MERV, d_p)$

1-week at near-roadway middle school³, w/ MERV 8 + 16

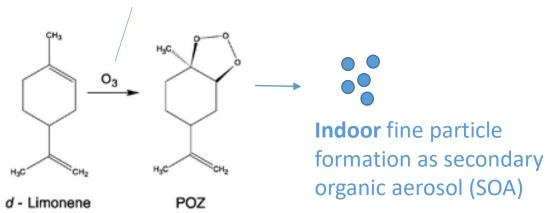
Blue line: Indoor BC levels avg. 150 ng/m³ w/ air cleaning; effectiveness of ~85%


Indoor sources of fine PM in schools

Occupants and their activities generate fine particulate matter

- Indoor sources important for PM_{2.5}
 - o PM_{2.5} indoor emission at HTMS:
 - $\sim 70 \frac{\mu g}{h \ person}$ (preliminary calculation)
- For black carbon:
 - No source from occupants + activities
 - Net source from building implies some
 BC penetrates envelope and persists

Preliminary source apportionment of fine particulate matter at HTMS¹:


Indoor VOC chemistry → particles

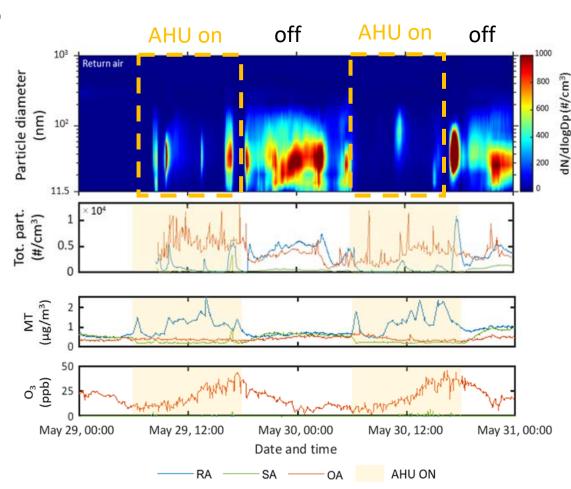
- Some volatile organic compounds of indoor origin are reactive
 - Limonene is the dominant indoor terpene¹
 - Limonene has high aerosol formation potential²
 - Ozone monoterpene chemistry occurs on time-scale relevant to indoor air³
 - Contributes to ultrafine and accumulation mode PM; possible health impact⁴

Ozone enters from outside

Monoterpenes:

compounds with molecular formula $C_{10}H_{16}$. Over 1000 different compounds

Limonene, a monoterpene, with indoor sources


Air-cleaning alters indoor chemistry

Carbon scrubber appears to reduce indoor secondary organic aerosol formation¹

AHU on \rightarrow air cleaning \rightarrow low indoor O₃ and lower monoterpene \rightarrow lower SOA formation

AHU off \rightarrow no air cleaning \rightarrow higher O₃ and higher monoterpene \rightarrow higher SOA formation

81% reduction in SOA source strength $\Delta = 3-5$ mg/h

Fine PM in near-roadway schools

Opportunities to reduce fine particle exposures in near-roadway schools:

- 1. ↑ distance from outdoor sources
- 2. Alter timing of activities
- 3. Air-cleaning
- 4. Address indoor sources
- 5. Quench indoor chemistry via air-cleaning and/or source reduction

Research and resource needs for schools:

- 1. Data on efficacy of installed interventions
- 2. Lower energy + maintenance methods for ventilation, air-cleaning
- 3. Research on PM source strengths in schools
- 4. Health impact of exposures to PM of indoor origin

People:

- Aurelie Laguerre, MS, Portland State University
- Dr. Linda George, Portland State University
- Brett Stinson, Portland State University

Funding:

- Portland Public School District
- This material is based upon work supported by the National Science Foundation under grant DUE #2037582

Supporting slides

Traffic related air pollution

Vehicles emit products of incomplete combustion:

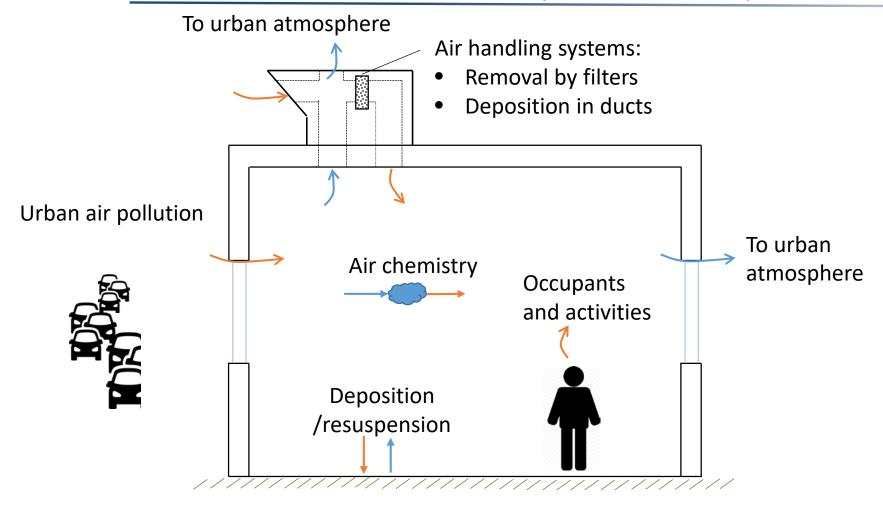
select TRAP constituents:

Particle-phase

- Black carbon
- Ultrafine particles, <100 nm

Gas-phase

- Carbon monoxide
- Oxides of nitrogen (NO/NO₂)
 - Volatile organics (e.g., BTEX)


TRAP:

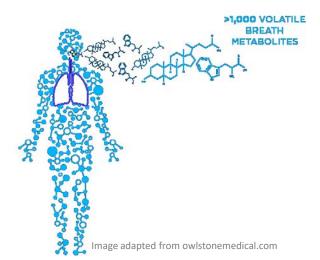
Trafficrelated air pollution

Black carbon (BC): carbonaceous product of incomplete combustion¹ **Black carbon** is a substantial fraction of:

i) PM_{2.5} in traffic environments² ii) vehicle PM emission factor³

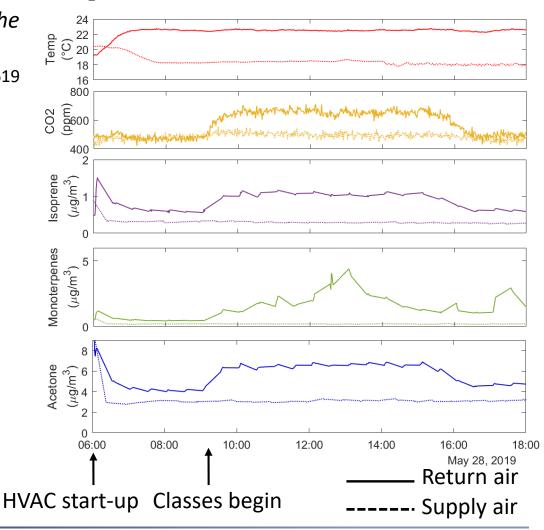
Indoor particle dynamics

$$\frac{dC_{fp}}{dt} = S - LC_{fp}$$


To apply mass conservation principles, we require parameterization of sources (S, μg m⁻³ h⁻¹) and losses (L, h⁻¹) to indoor control volume

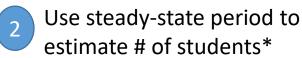
Humans are major source of VOCs

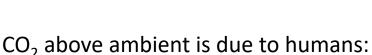
"...building's occupants, simply by being present, significantly change the air chemistry inside..."

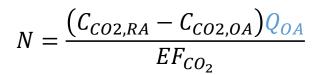

https://www.pnas.org/content/117/37/22619

Humans emit VOCs that:

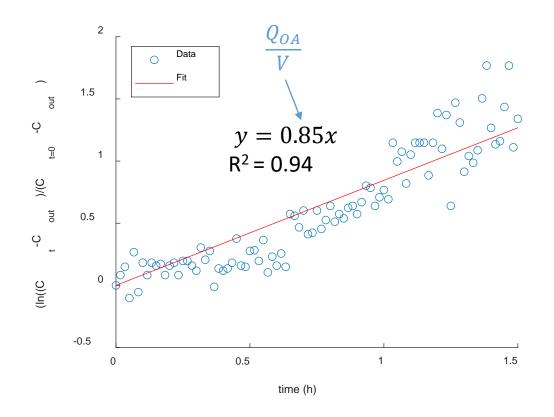
- degrade perceptions of indoor air
- engage in chemistry and become harmful to health


CO₂ and VOCs in Harriet Tubman Middle School



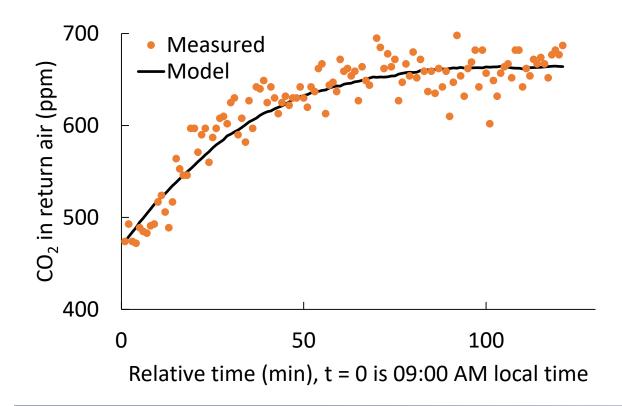

Ventilation and occupancy

Analyze CO₂ decay occurring at end of day post occupancy, air handler operating



N = 447 people

Compares well with school district records: 515 people


^{*}Assumes Q_{OA} from end of day applies to stable occupancy period

^{*}CO₂ emission factor is weighted average of students aged 11-16 (weighted equally for males, females) and staff from Persily et al.¹

Estimating school airflows

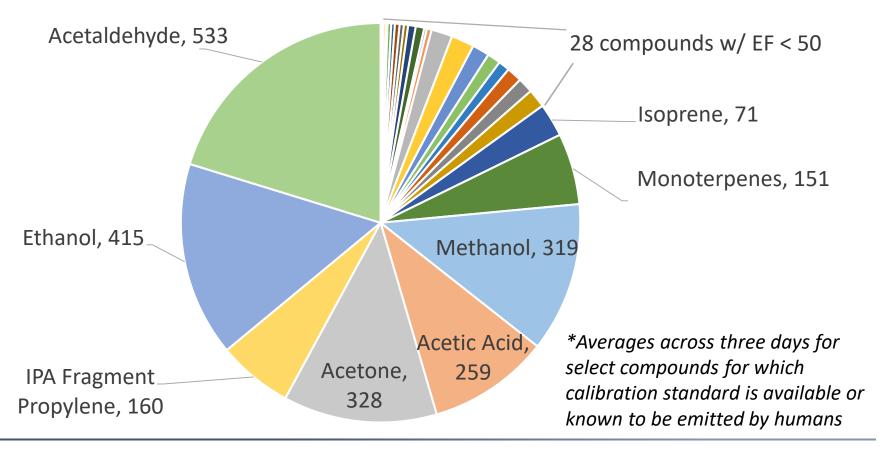
 $oxed{3}$ Analyze accumulation period determine λ

$$\frac{dC}{dt} = \frac{Q_{SA}}{V}C_{CO2,SA}(t) - \frac{Q_{SA}}{V}C_{CO2,RA}(t) + \frac{EF \times N}{V}$$

- 1. Discretize
- 2. Solve for best fit Q_{SA} by minimizing residuals (SSE)

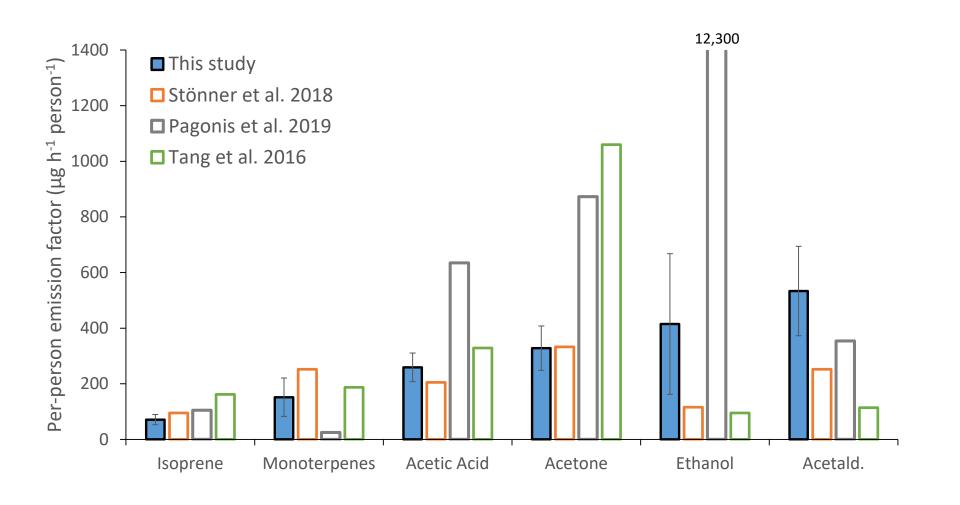
$$Q_{SA} = 43,000 \text{ ft}^3/\text{min}$$

Consistent w/ mechanical contractor's estimate 40,000 – 65,000 ft³/min and Q_{SA} from steady-state flow balance on AHU


Method may be useful for buildings that are occupied, access to air handler only

Emission factors

$$EF = \frac{\left(\frac{M_{emitted}}{\Delta t}\right)_{occuppied} - \left(\frac{M_{emitted}}{\Delta t}\right)_{vacant}}{\# \ of \ people}$$


- Monday: Federal holiday as control
- Tues, Wed, Friday: all met criteria for analysis of flows, occupancy calcs

Per-person emission factors* (μg h⁻¹ person⁻¹)

EFs are scarce, esp. for K-12 schools

Fate of indoor emissions

- Chemistry & partitioning¹ to surfaces
- Emissions outdoors?
 - o Monoterpenes are well studied in outdoor air
 - o Limonene emission factor (area): school vs. plants

Area emission factor $= \frac{92,000 \mu g h^{-1}}{5800 m^2}$

= $16 \mu g m^{-2} h^{-1}$ for a middle school campus Needle leaf²: 99 $\frac{\mu g}{m^2 h}$

Broadleaf²: 41 $\frac{\mu g}{m^2 h}$

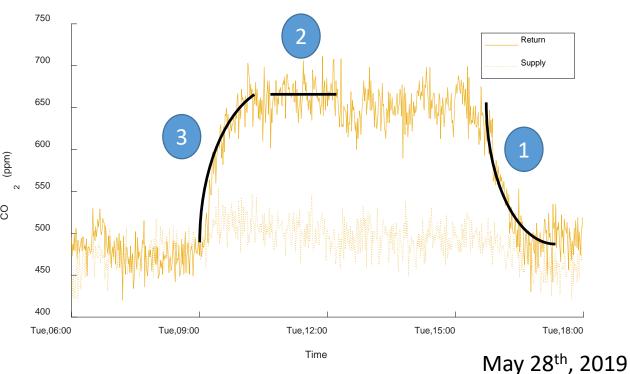
Delosperma (sedum)³: 5 $\frac{\mu g}{m^2 h}$

5800 m² area

In cities, large building footprints.

 Indoor emissions can be released outdoors and affect urban + regional air quality!

Characterizing indoor emission rates


Supply air $V = 36,800 \text{ m}^3$ $\lambda_{SA} = 0.8 \text{ h}^{-1}$ # occupants = ~500

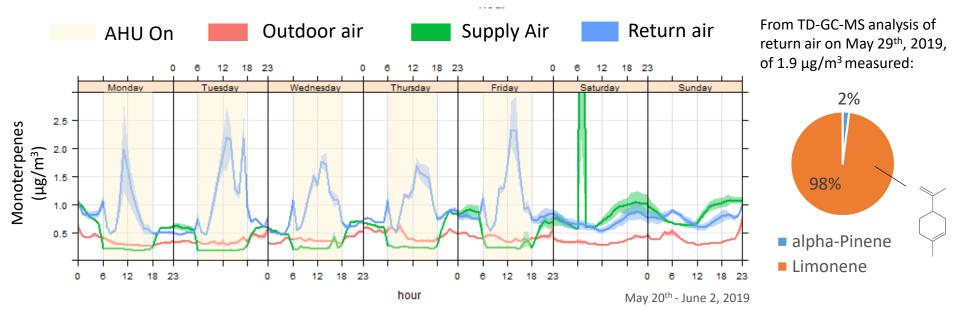
Mass, M, of compound emitted into school¹

$$M = \lambda_{SA} V \int_{t_0}^{t_1} (C_{return} - C_{supply}) dt + V \int_{t_0}^{t_1} dC_{return}$$

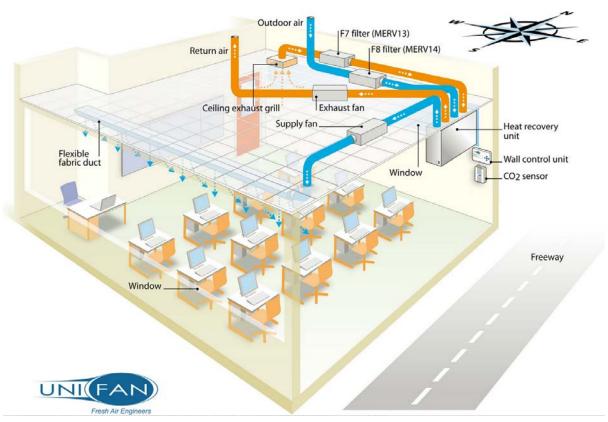
Flowrate to building (SA = supply air) is unknown

- Could not perform intentional tracer decay
- Developing method for λ_{SA} from analysis of:
- λ_{OA} (outdoor air) via "natural" decay
- Use λ_{OA} w/ steady-state $^{\circ}$ to estimate # of students
- Use # students and the CO_2 emission rate to determine λ_{SA}

Indoor VOC dynamics at HTMS


VOC monitoring at HTMS shows:

- Indoor VOC concentrations are dynamic
- Humans are an important source of monoterpenes to the space
- Most of the indoor monoterpene signal likely limonene


PTR-MS, sampling manifold to three locations in AHU

Air cleaning efficacy in occupied schools

Air-cleaning and ventilation (MERV13/14) system implemented in near-roadway school in Amsterdam¹

- Reduced I/O ratio of BC by, on average, 36%
- Authors suggest high infiltration, recommend locating schools far from freeways

Additive air "cleaners"

Bipolar Ionization/Corona Discharge/ Needlepoint Ionization and Other Ion or Reactive Oxygen Air Cleaners

ASHRAE: Convincing scientificallyrigorous, peer-reviewed studies do
not currently exist on this emerging
technology; manufacturer data
should be carefully considered.¹
May range from "ineffective" to
"very effective"²

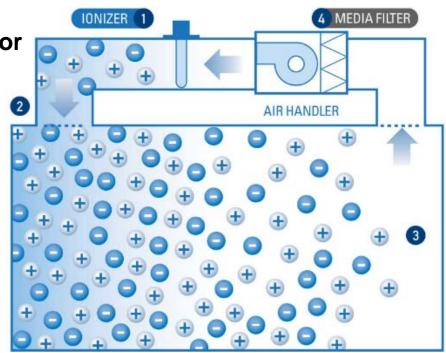
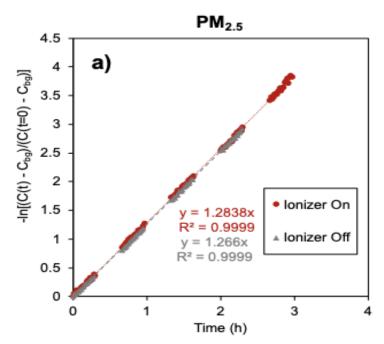


Image: ASHRAE


Recent peer-reviewed studies:

- Negative ions (~60,000 /cm³) decreased PM_{2.5}, did not reduce markers of oxidative stress. "...downsides do not support the use of [negative ions] as a health-based mitigation strategy ..."³
- Ionizer use in Beijing classrooms (~13,000 /cm³) may have positively impacted respiratory health at the expensive of negative effects on cardiac health.⁴

Effects in the space

Particles: little to no effect on loss rates

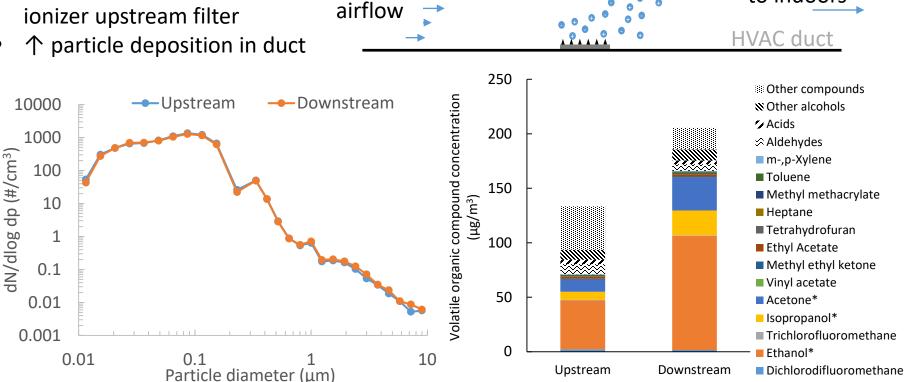
Loss rates (1/h):

	lonizer off	lonizer on
PM2.5	1.27	1.28
SMPS (10-150 nm)	1.31	1.45
OPS (0.3 – 10 μm)	1.16	1.13

VOCs: some removed, some formed

% Change in I/O Ratio ¹
+2%
+13%
+73%
+28%
+15%
< -42%
< -64%
< -78%
< -17%
-19%

¹ values with < indicate measured value inside the chamber was below MDL


Experiments and results by IIT, led by Dr. Brent Stephens w/ his team

Effects in the duct

ionizer

Possible claims:

- ↑ removal by filtration if ionizer upstream filter

Field measurement results:

*extrapolated beyond calibration curve

to indoors

- Measurements in office building with NPBI operating, averaged over 1 h
- Ozone levels were similar upstream and downstream
- No evidence of agglomeration, VOC byproducts generated