# Main Physical Phenomena in Metal Powder Bed Fusion

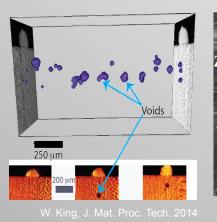
Q. 3 & 8

DC Workshop Oct 7-9, 2015

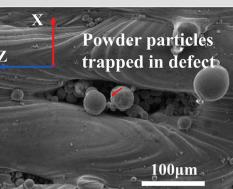
Saad Khairallah, Andy Anderson & Sasha Rubenschik



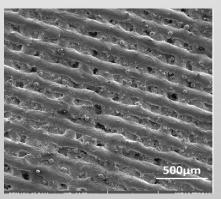



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

**LLNL-PRES-676079** 

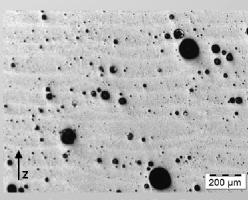

# Main challenge: how to select correct process parameters for a final product that meets engineering standards?

Defects are born at the single powder layer and may seed more defects in subsequent layers


#### Pores in Keyhole-mode



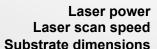
Incomplete melting




Rough surface, bad wetting



X. Zhou, Act. Mat. 2015

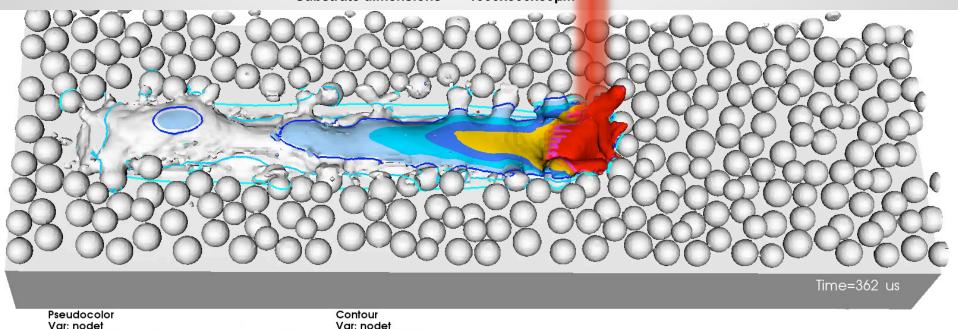

Low density part, bad quality



C. Weingarten J. Mat. Proc. Tech. 2015

Selective laser melting process is complex: It is easy to introduce defects. Our understanding of the interplay between process parameters (laser power/speed, powder distribution/thickness...) is still lacking.

# Approach: Mesoscopic 3D simulation of metal powder bed fusion using ALE3D




1700

1350

1000

200W 1500mm/s 1000x300x50µm<sup>3</sup>



Physics
Pore Generation
Recommendations

3000

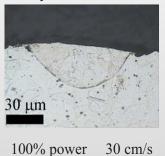
2750

What is the driving physics?
How do pores form and evolve?
Guidance for better parameter choice?

2500

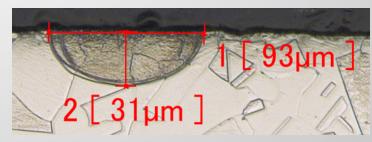
1700

2000

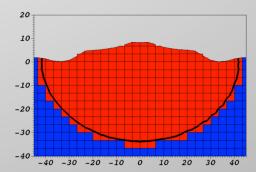

2250

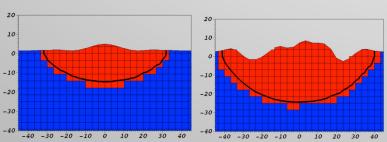
## Model-2104 (no recoil or MARANGONI) bare plate validation

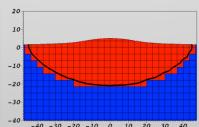
A.V. Gusarov, I.Y. (2009). "Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting". Journal of Heat Transfer, 131, 072101.




30 µm 50% power 3 cm/s





30 cm/s


LLNL **experiment** (uncertainty +/-5µm)

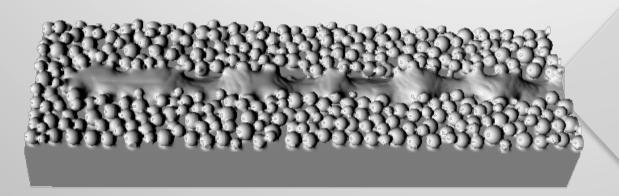


91 w 380 mm/s

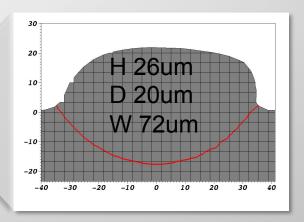




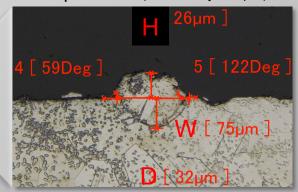



We match the bare plate melt pool dimensions well, although we consider an average value for the material absorptivity.

Khairallah, S.A., Anderson, A., 2014. "Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder", **Journal of Materials Processing Technology.** 


### Model-2014 validation (no recoil or MARANGONI)

Khairallah, S.A., Anderson, A., 2014. "Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder", Journal of Materials Processing Technology.


#### Simulation and experiment showing Plateau-Rayleigh instability



#### Melt pool profile



Experiment (uncertainty +/-5µm)



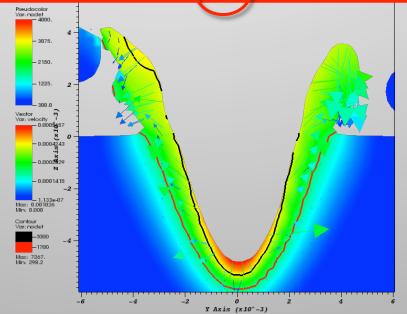
# 163µm 190µm

The simulation can predict well the main characteristics of the laser powder track

## **Model-2015 validation**

Int J Adv Manuf Technol (2014) 74:65-78

71


Table 3 The melt-pool width, height, and depth for the 14 tracks, along with the laser power and scan speed settings

| Track number | Power (W) | Speed (mm/s) | Width (µm) | Height (µm) | Depth (µm) |
|--------------|-----------|--------------|------------|-------------|------------|
| 1            | 400       | 1800         | 112        | 32          | 105        |
| 2            | 400       | 1500         | 103        | 79          | 119        |
| 3            | 400       | 1200         | 83         | 28          | 182        |
| 4            | 300       | 1800         | 94         | 57          | 65         |
| 5            | 300       | 1500         | 83         | 35          | 94         |
| 6            | 300       | 1200         | 111        | 76          | 114        |
| 7            | 300       | 800          | 110        | 54          | 175        |
| 8            | 200       | 1500         | 84         | 26          | 57         |

#### Melt pool profile

If Absorptivity is 0.4, then
Depth is 60um
Width is 80um

If Absorptivity is 0.3, then
Depth is 50um
Width is 74um



Depth and width calculations improved due to added physics

I would like to apologize for taking out some slides. The reason is these were submitted for publication in a journal.