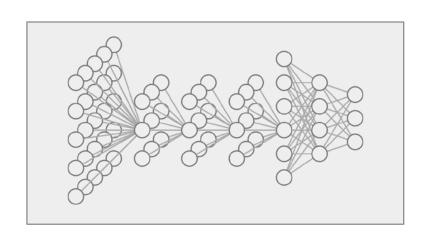


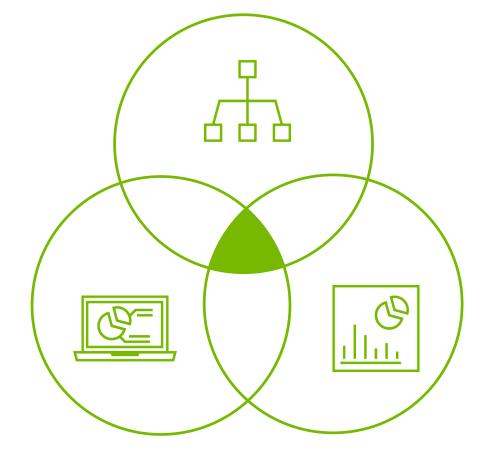
AI ALGORITHMS FOR MECHANICS

ANIMA ANANDKUMAR

TRINITY OF AI



ALGORITHMS



COMPUTE

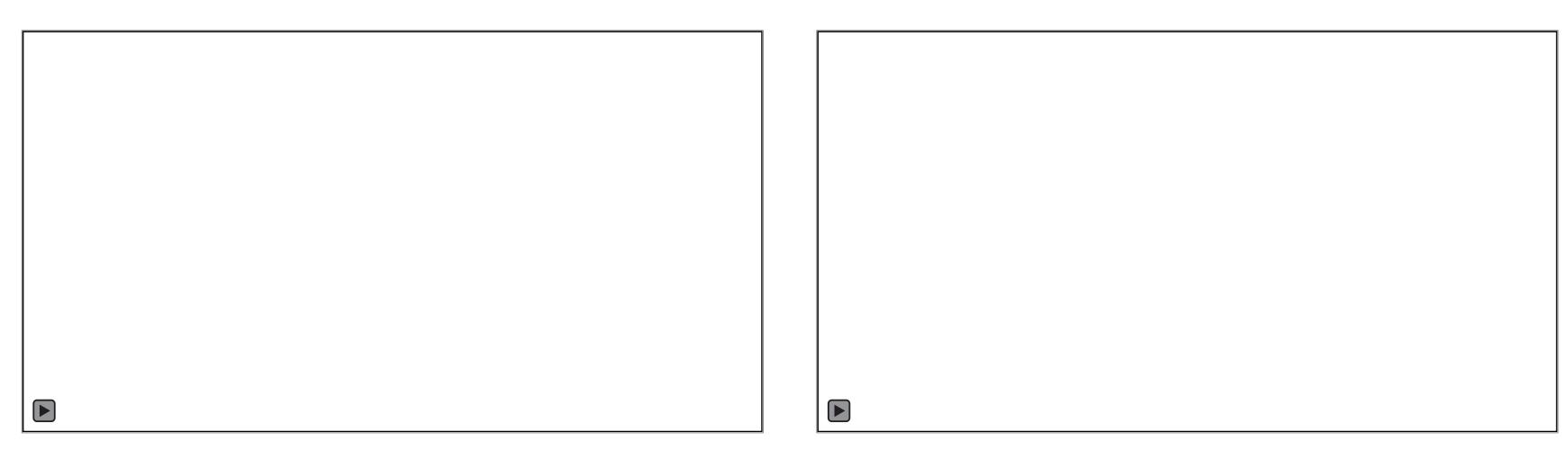
HARD CHALLENGES FOR AI

Al is Not Living Up to its Hype

Safety-critical Applications

STATE OF PROGRESS

Most Robots Have No Intelligence

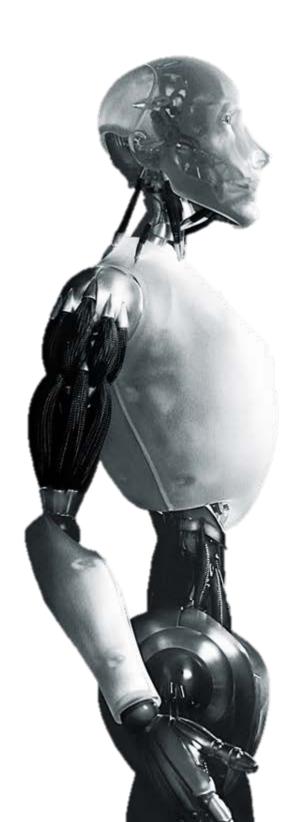


Boston Dynamics Atlas Robot

Fumbling Dog

EMBODIED AI

Mind + Body



Instinctive:

Fine-grained reactive Control

Safe:

Understand dangers

Deliberative:

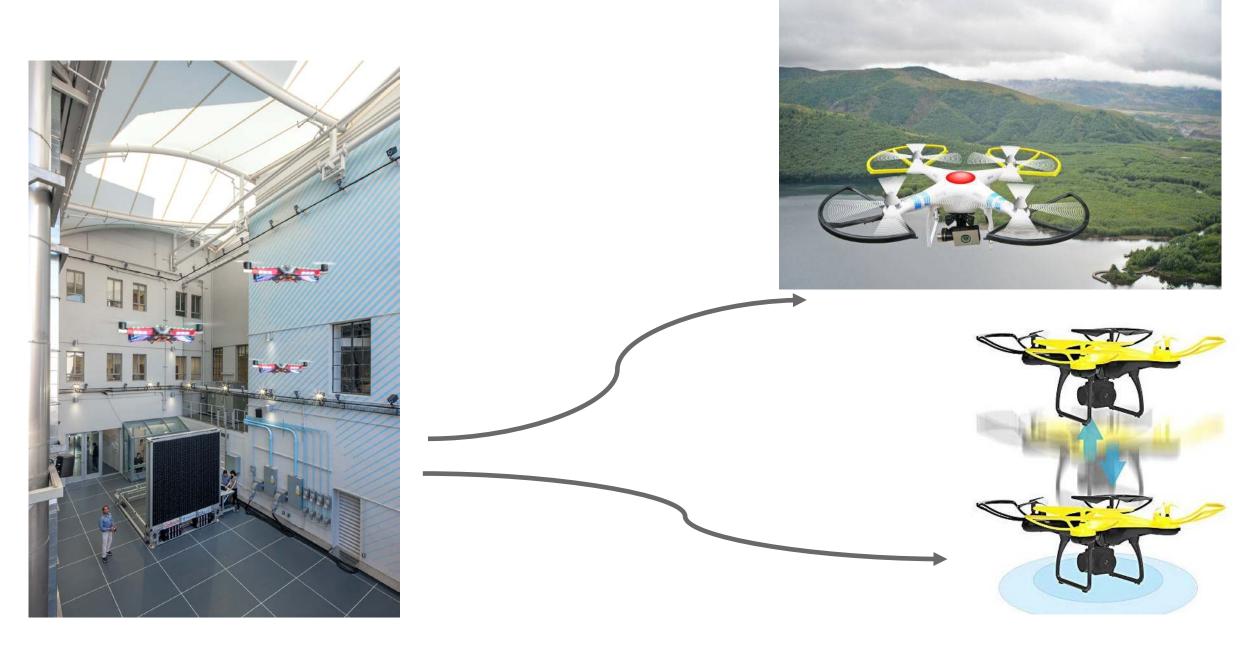
Making and adapting plans

Multi-Agent:

Acting for the greater good

LEARNING IN CONTROL SYSTEM

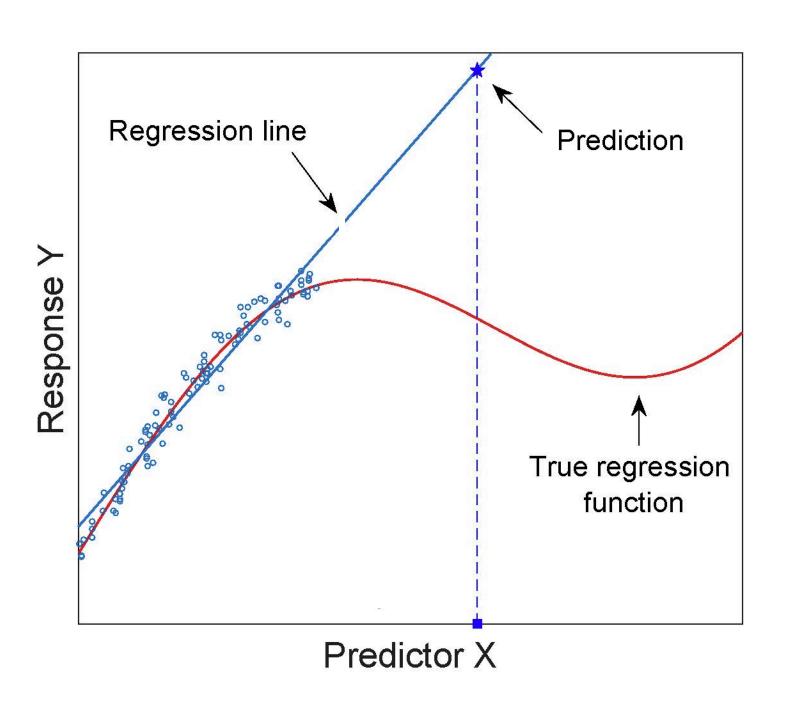
CHALLENGE: DOMAIN SHIFT IN THE REAL WORLD



Training Deployment

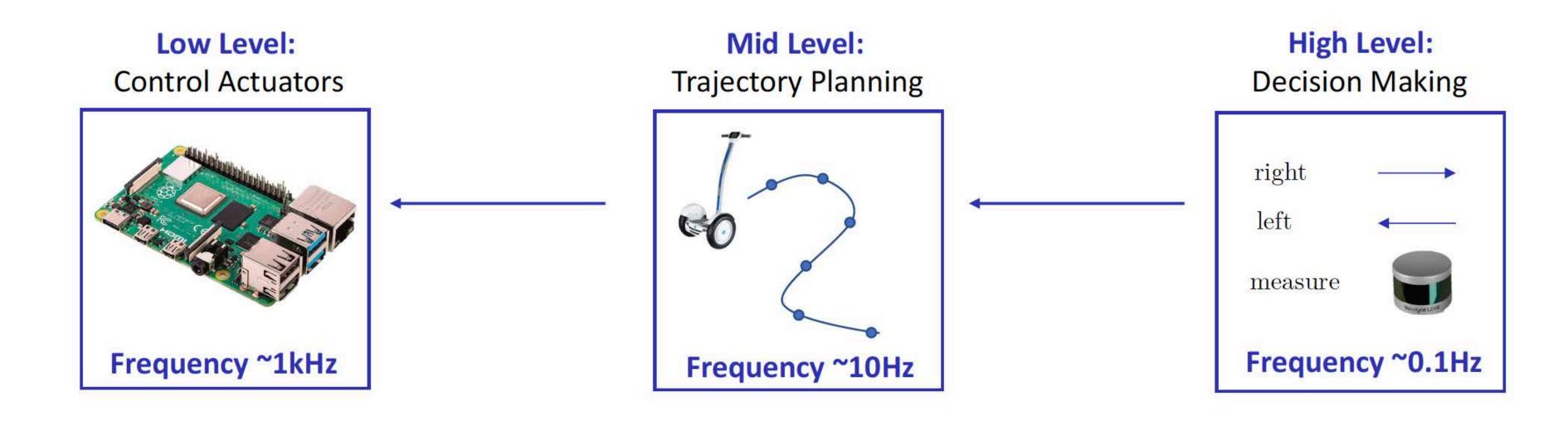
IGNORING DOMAIN SHIFT CAN BE RISKY

How to get good uncertainty estimates?



MODULARITY IN CONTROL SYSTEMS

Unlike deep learning, which tends to be monolithic



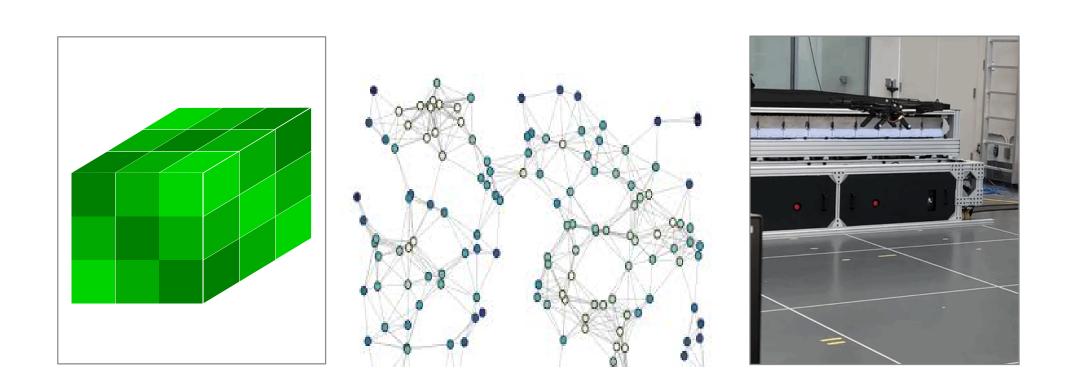
How to incorporate learning in each module while preserving safety and stability?

HOW TO USE STRUCTURE AND DOMAIN KNOWLEDGE TO DESIGN ROBUST PRIORS?

Learning = Data + Priors

Examples of Priors

- Tensors and graphs
- Laws of nature
- Simulations



Guanya Shi

Xichen Shi

Michael O'Connell

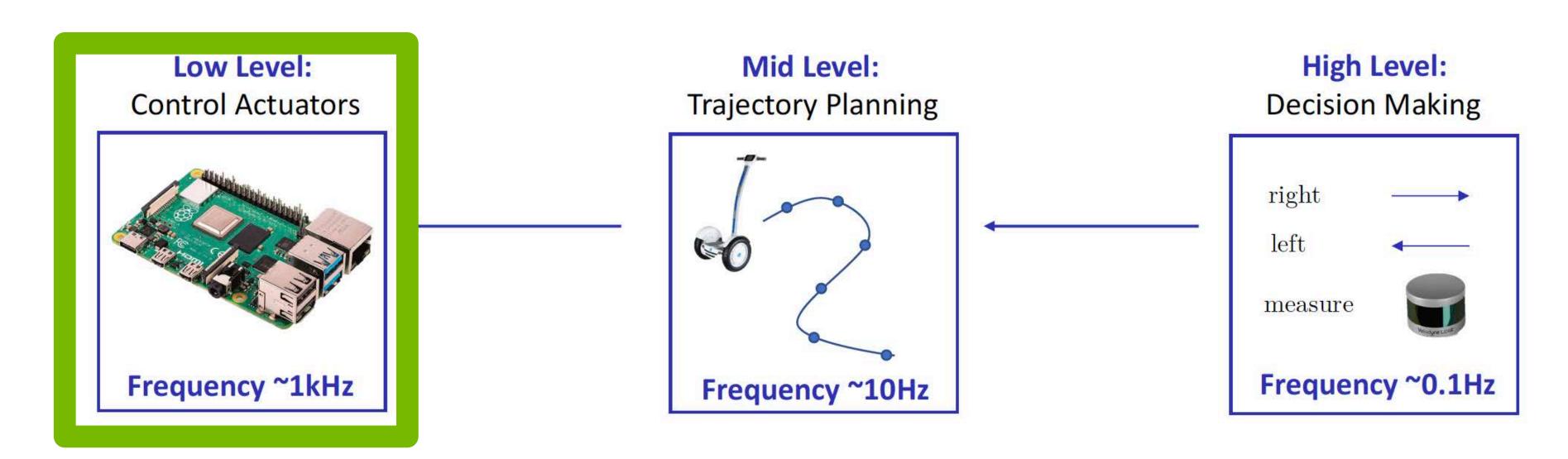
Rose Yu

Kamyar Azizzadenesheli

Soon-Jo Chung

Yisong Yue

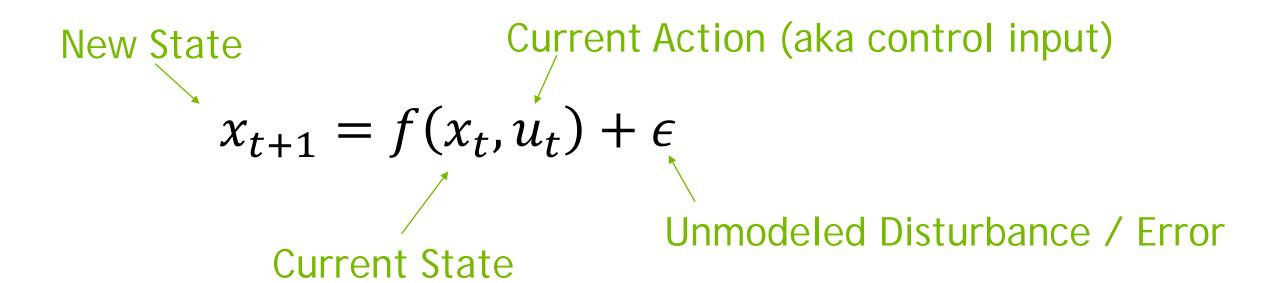
LEARNING IN LOW-LEVEL CONTROL



How to incorporate learning in each module while preserving safety and stability?

BASELINE: MODEL-BASED CONTROL

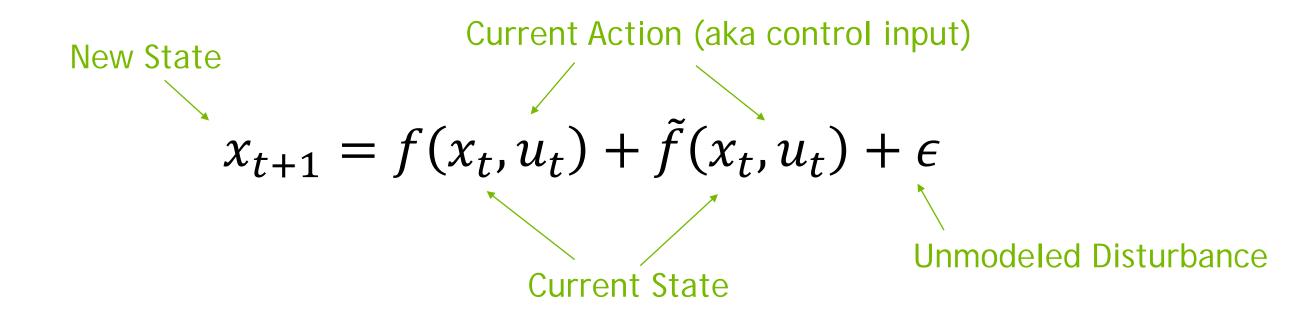
(NO LEARNING)



Robust Control (fancy contraction mappings)

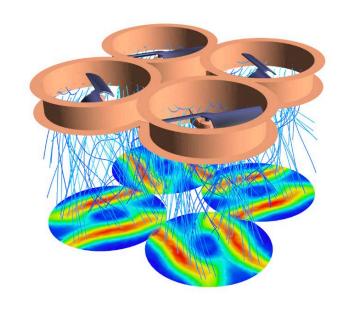
- Stability guarantees (e.g., Lyapunov)
- Precision/optimality depends on error

LEARNING RESIDUAL DYNAMICS



Use existing control methods to generate actions

- Provably robust (even using deep learning)
- Requires \tilde{f} Lipschitz & bounded error



Learn the Residual (function of state and control input)

- Dynamics:
- Control:

$$\dot{\mathbf{p}} = \mathbf{v}, \qquad m\dot{\mathbf{v}} = m\mathbf{g} + R\mathbf{f}_u + \mathbf{f}_a$$
 $\dot{R} = RS(\boldsymbol{\omega}), \quad J\dot{\boldsymbol{\omega}} = J\boldsymbol{\omega} \times \boldsymbol{\omega} + \boldsymbol{\tau}_u + \boldsymbol{\tau}_a$

$$\mathbf{f}_{u} = \begin{bmatrix} 0, 0, T \end{bmatrix}^{\top}$$

$$\boldsymbol{\tau}_{u} = \begin{bmatrix} \tau_{x}, \tau_{y}, \tau_{z} \end{bmatrix}^{\top}$$

$$\begin{bmatrix} T \\ \tau_{x} \\ \tau_{y} \\ \tau_{z} \end{bmatrix} = \begin{bmatrix} c_{T} & c_{T} & c_{T} & c_{T} \\ 0 & c_{T}l_{\text{arm}} & 0 & -c_{T}l_{\text{arm}} \\ -c_{T}l_{\text{arm}} & 0 & c_{T}l_{\text{arm}} & 0 \\ -c_{Q} & c_{Q} & -c_{Q} & c_{Q} \end{bmatrix} \begin{bmatrix} n_{1}^{2} \\ n_{2}^{2} \\ n_{3}^{2} \\ n_{2}^{2} \end{bmatrix}$$

Unknown forces

$$\mathbf{f}_{a} = [f_{a,x}, f_{a,y}, f_{a,z}]^{\top}$$
$$\boldsymbol{\tau}_{a} = [\tau_{a,x}, \tau_{a,y}, \tau_{a,z}]^{\top}$$

Learn the Residual: Ground effect

CONTROLLER DESIGN

Nonlinear Feedback Linearization:

$$u_{nominal} = K_S \eta$$
 $\eta = \begin{bmatrix} p - p^* \\ v - v^* \end{bmatrix}$ Desired Trajectory (tracking error)

Feedback Linearization (PD control)

Cancel out ground effect using learned model

$$u = u_{nominal} + u_{residual}$$

GENERALIZATION PERFORMANCE



Spectral Normalization of each layer in neural network: Ensures \tilde{f} is Lipshitz

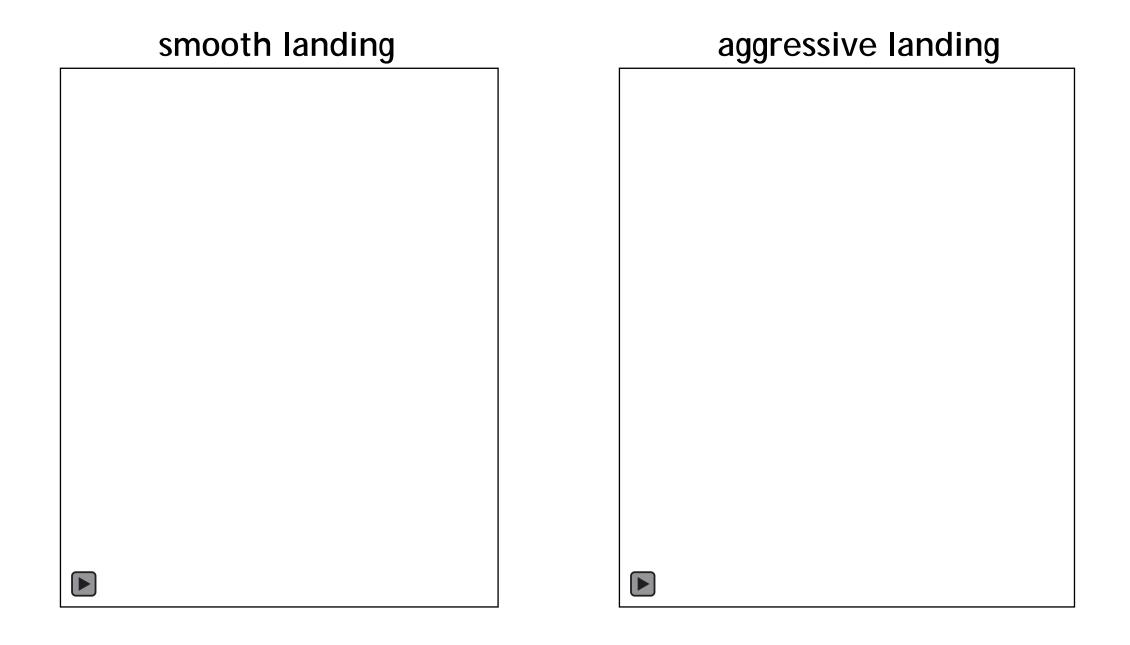
Guarantees stability under domain shifts

LEARNING TO LAND

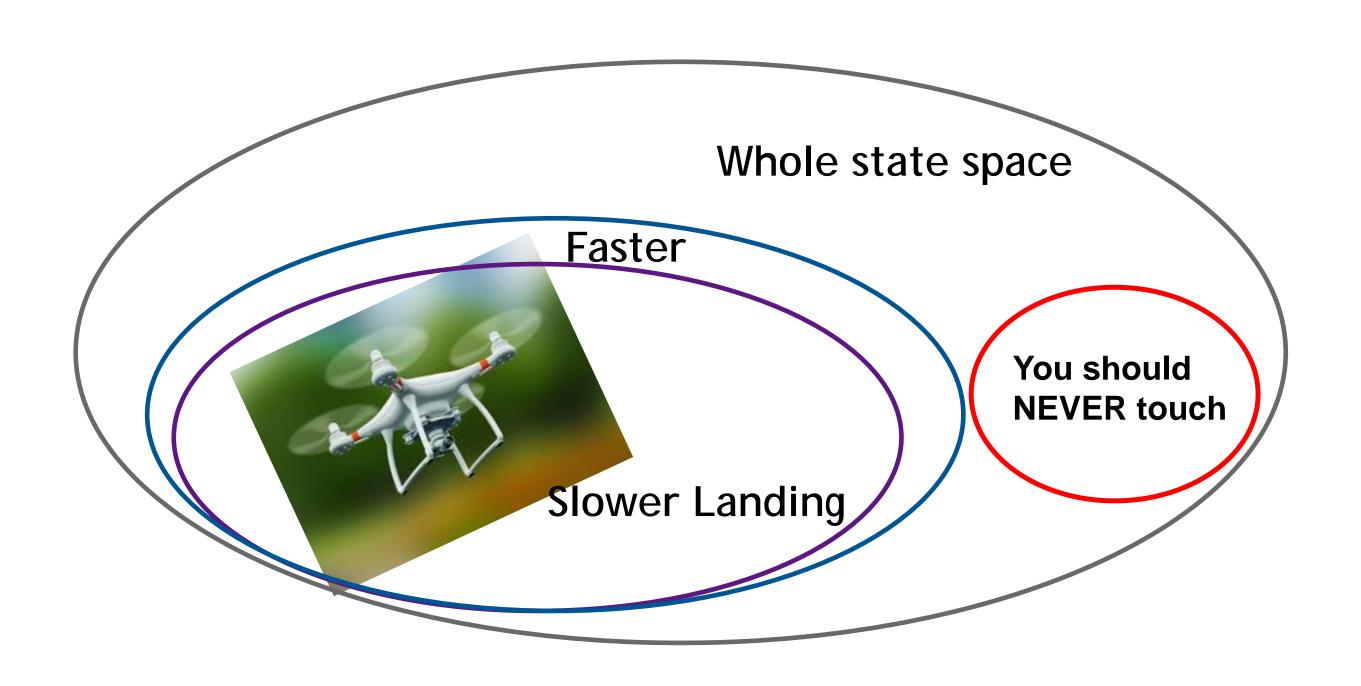
TESTING TRAJECTORY TRACKING

Move around a circle super close to the ground

GOING BEYOND MANUAL DATA COLLECTION



CAN MACHINE EXPLORE STATE SPACE ITSELF?



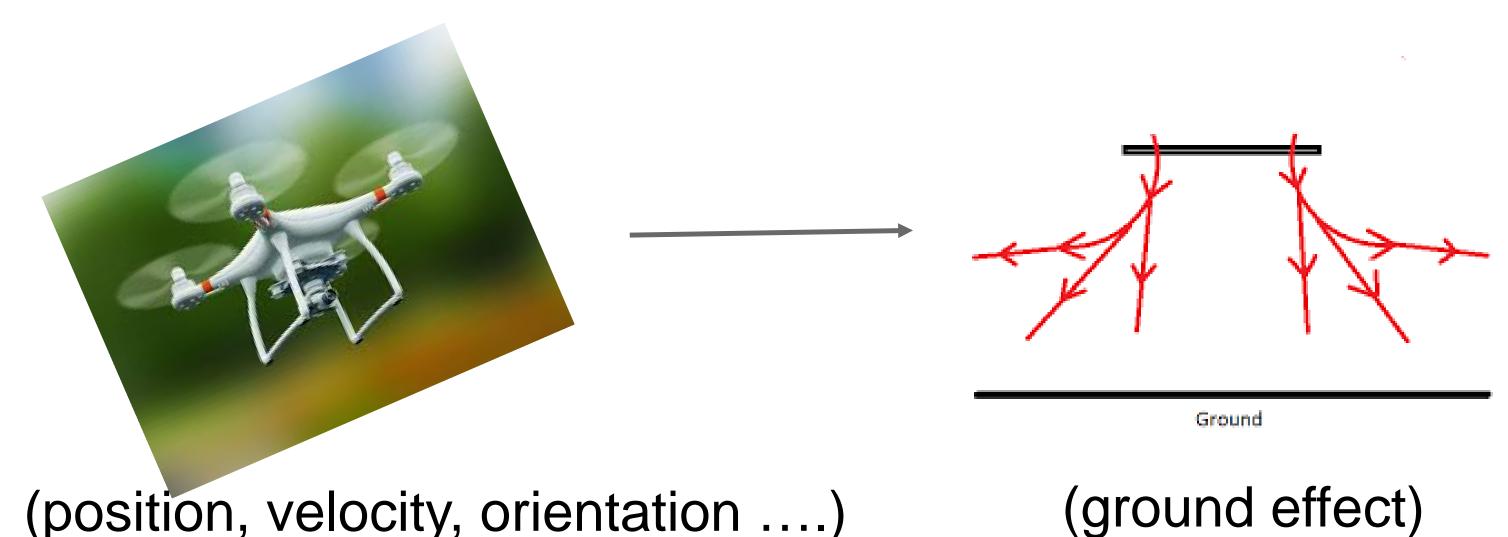
RECIPE FOR SAFE EXPLORATION

Given a pool of trajectories and initial model

Repeat:

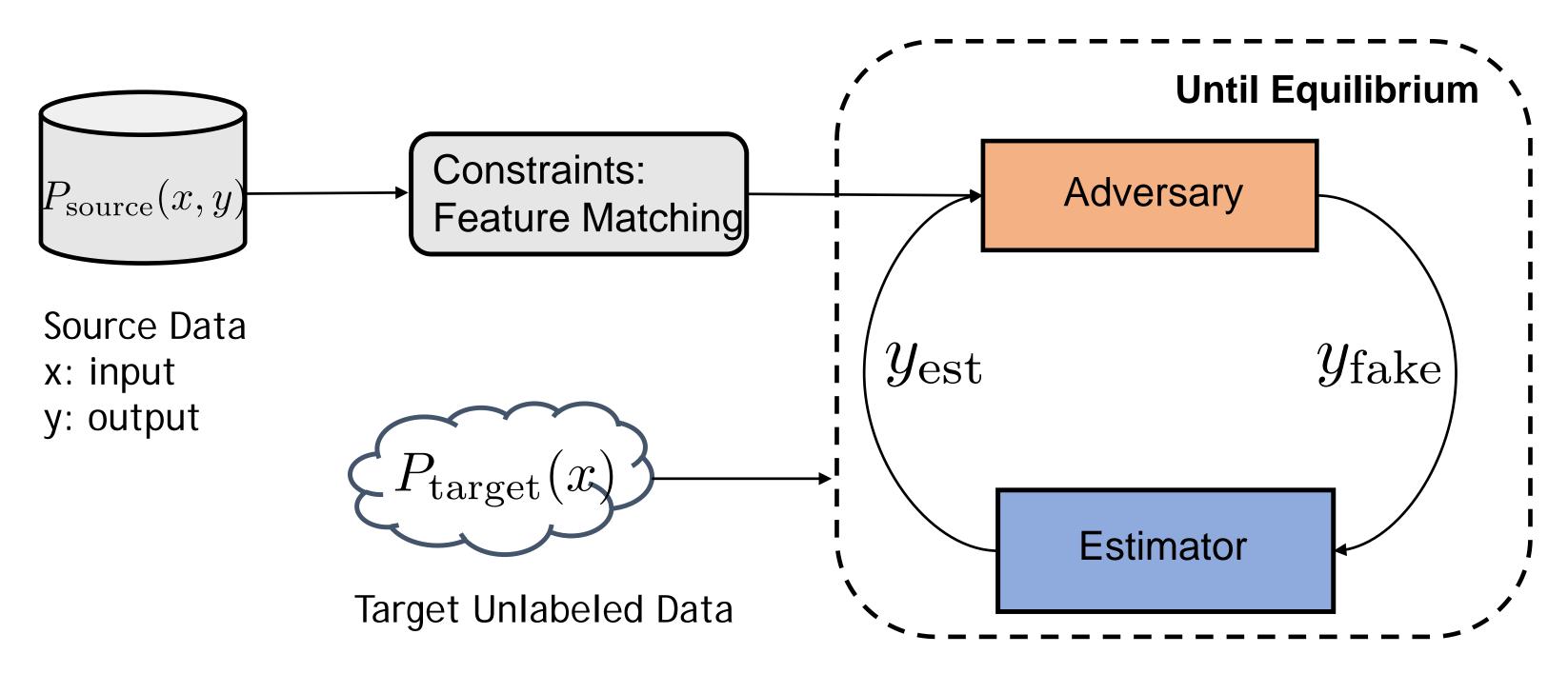
- Evaluate model on the pool
- Check safety using uncertainty bounds
- Query safe samples that minimize landing time
- Retrain model

COVARIATE SHIFT IN DRONE DYNAMICS



- Ground truth physics model is unchanged
- Input data distribution changes

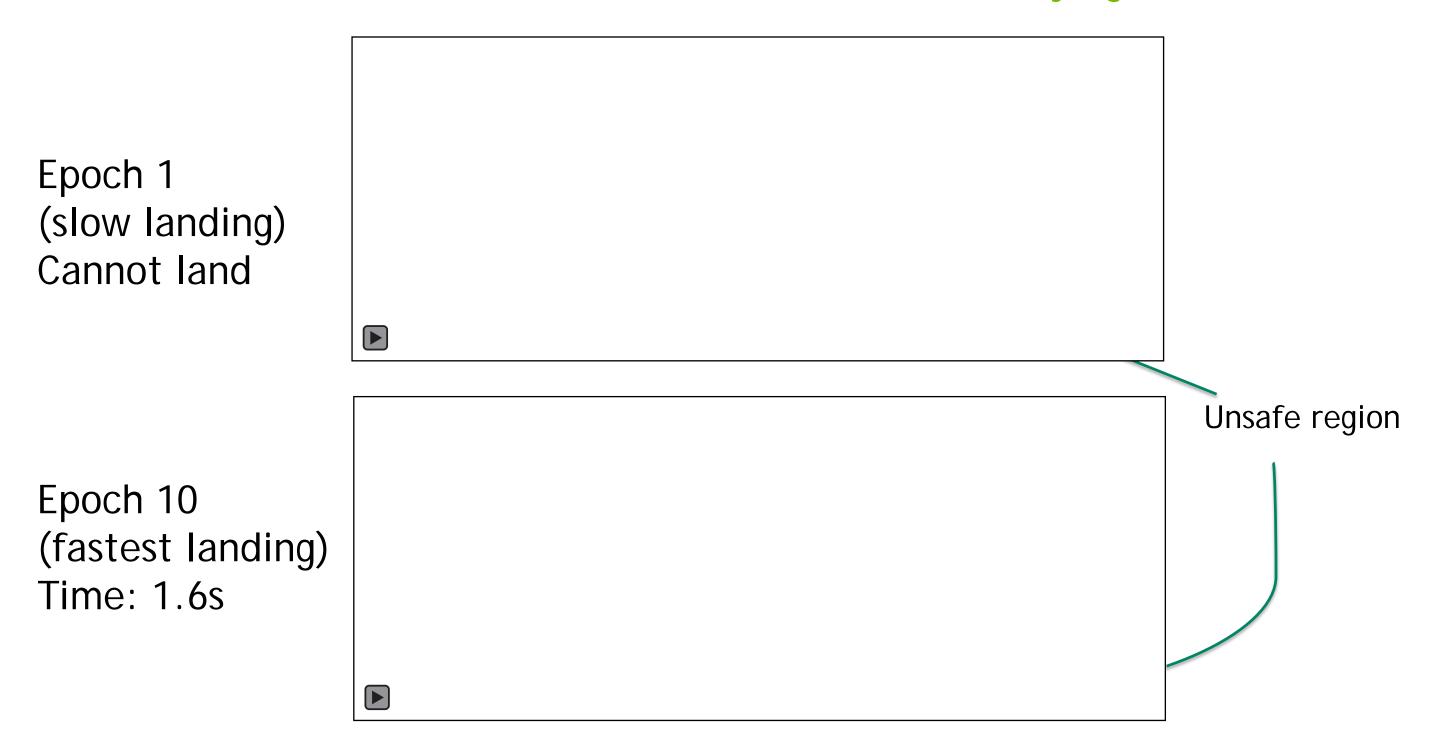
ADVERSARIAL LEARNING UNDER COVARIATE SHIFT



Guaranteed learning and tracking uncertainty bounds

LANDING TASK

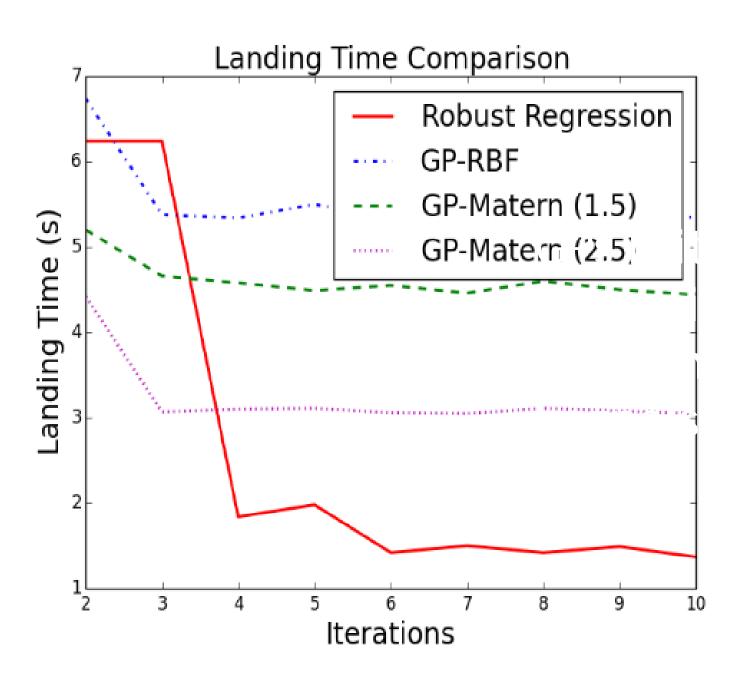
Ground effect measurement from real flying data



We converge to fastest landing (in our trajectory pool) in 10-15 epochs.

COMPARISON WITH GAUSSIAN PROCESS

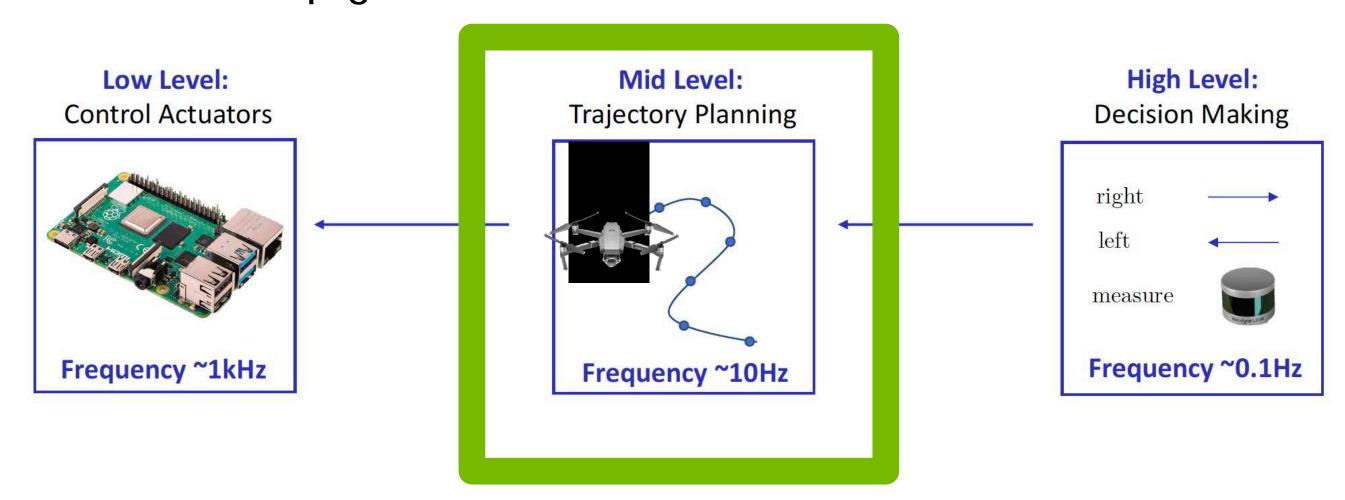
Challenging for GPs: multiple dimension outputs



EFFECT OF UNCERTAINTY ON MID-LEVEL CONTROL

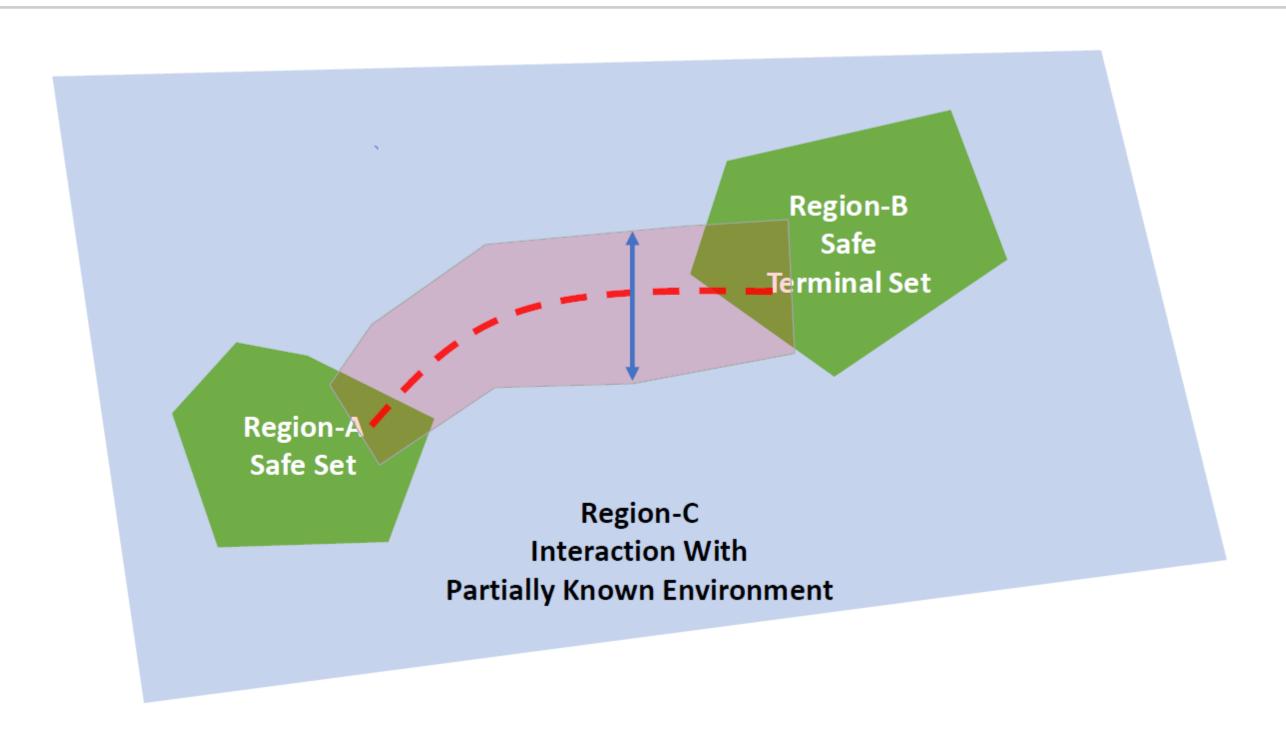
Trajectory planning under uncertainty

- Uncertainty can arise in each layer and learning is needed.
- How to keep guarantees end to end?

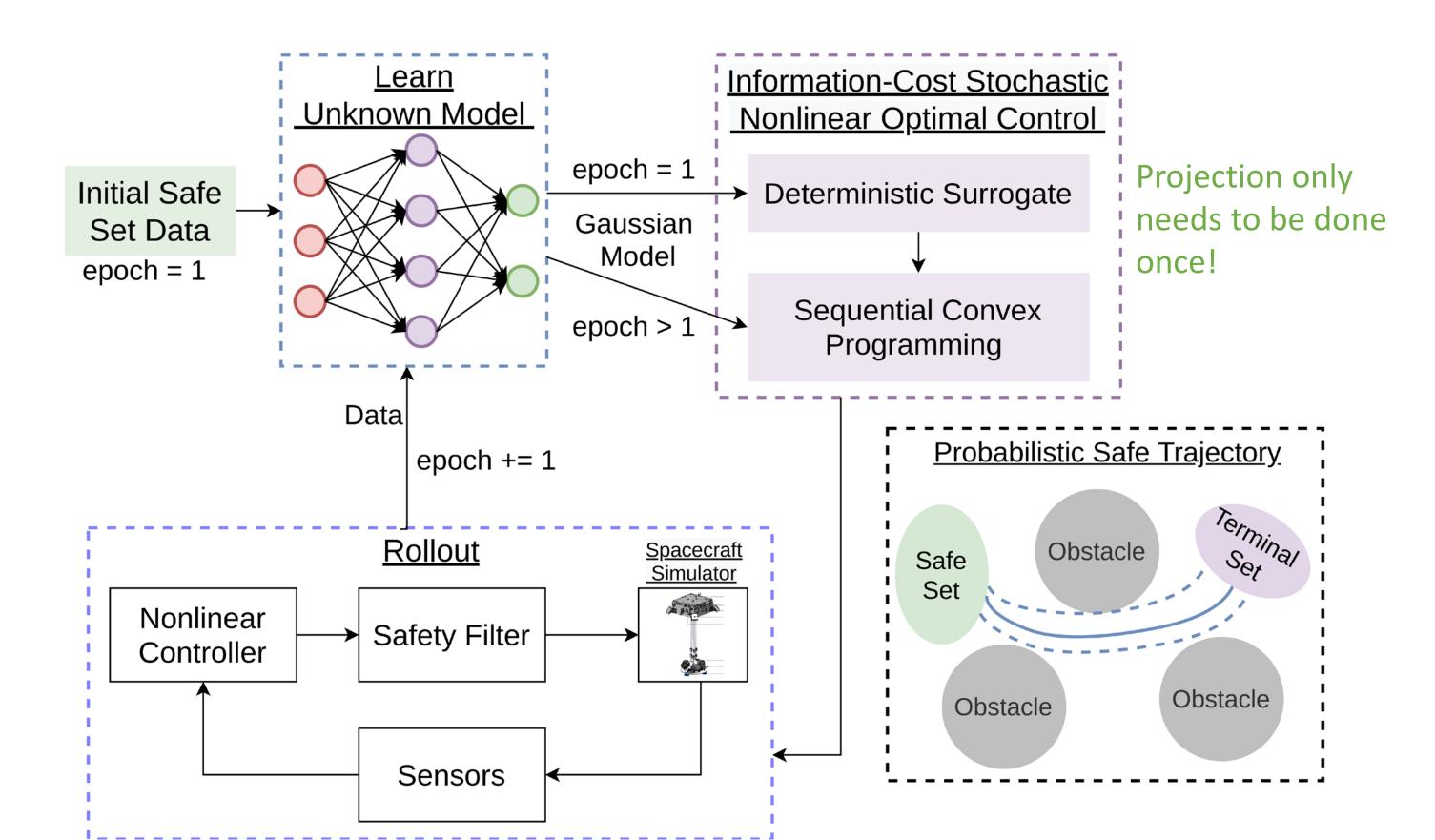


OUR GOAL

Design an **Informative and Safe Trajectory**With a Given risk of Constraint Violation For Safe Exploration

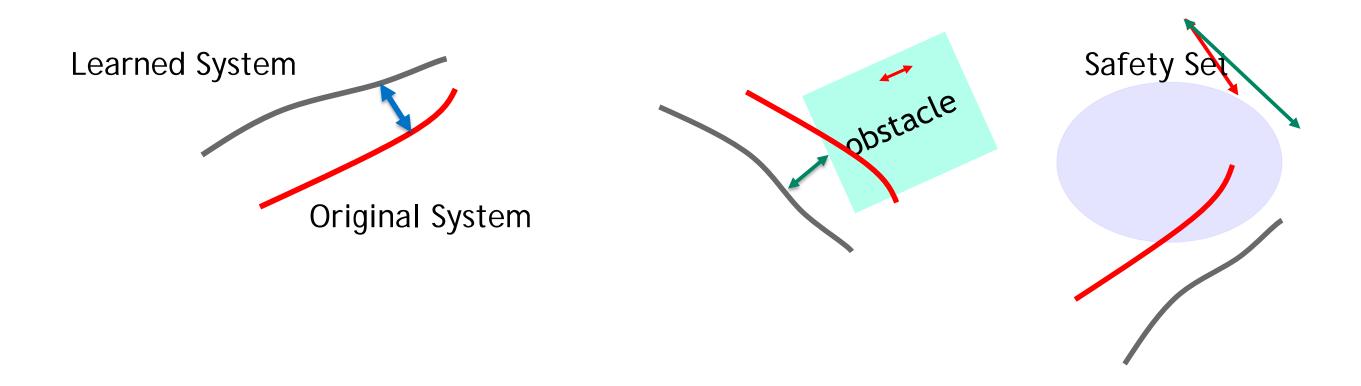


INFORMATION-COST STOCHASTIC NONLINEAR OPTIMAL CONTROL



ROBUST LEARNING AND PLANNING

Uncertainty propagation



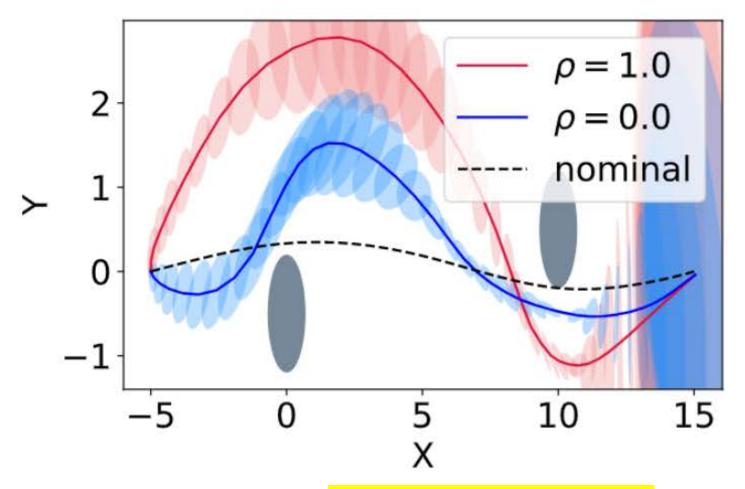
SPACECRAFT ASSEMBLY AND SIMULATION FACILITY

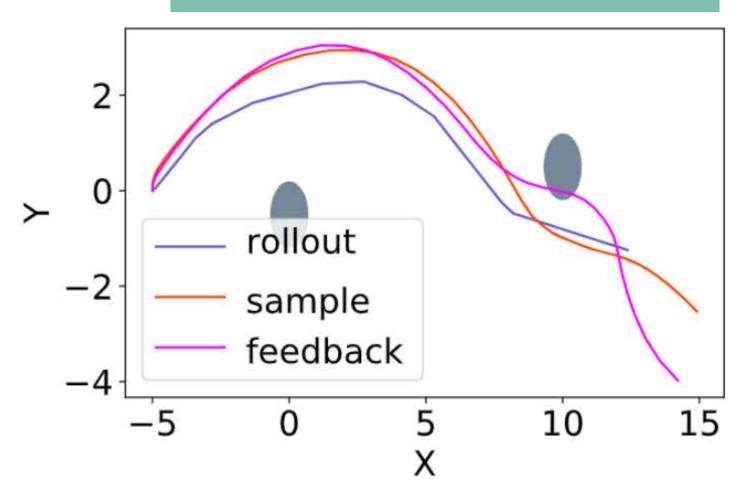
EXAMPLE: SPACECRAFT SIMULATORS

Info-SNOC

Probabilistic Safe and Informative Trajectory

Rollout With and without Safety Filter at Epoch = 1





Our approach has 30% higher success rate than standard planning algorithm

 ρ adjust the "importance" of information cost and performance cost ρ = 0, only fuel cost; ρ = 1, only information cost

NEXT STEPS: WIND CONDITIONS

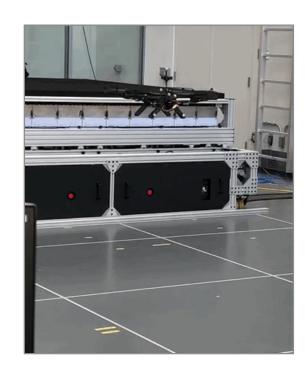
ROBUST META LEARNING

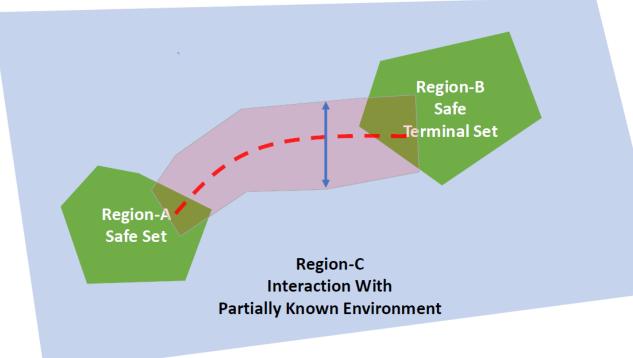


SUMMARY

Robust learning for control systems

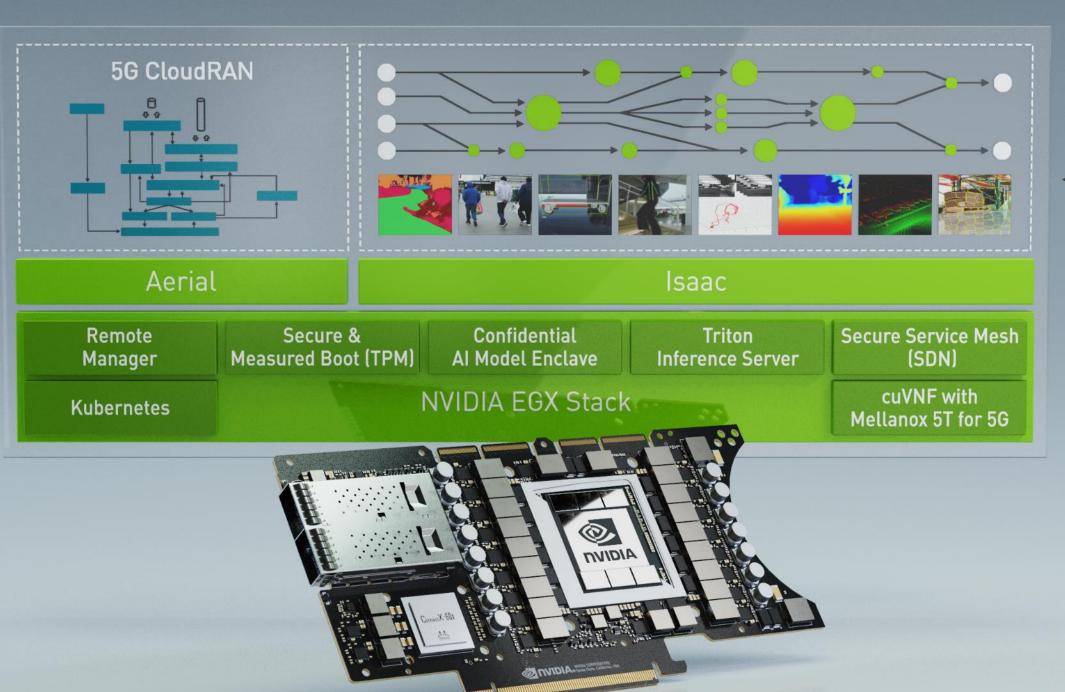
- Covariate Shift is inherent in learning in control systems.
- Adversarial estimation accounts for worst-case model.
- Uncertainty propagates from learning to planning + control.
- To encourage exploration, need to plan for more informative data collection.
- ► To guarantee safety, we need obtain end-to-end bounds.
- We validate our method in real-world systems.





NVIDIA ISAAC — PLATFORM FOR ROBOT LEARNING

Actual Factory



Virtual Factory Digital Twin

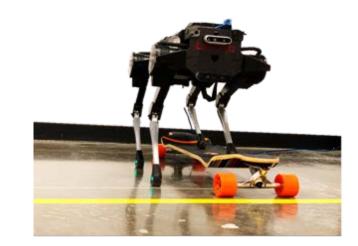
HIERARCHICAL REINFORCEMENT LEARNING ON ISAAC

Simulations for Robot Learning

ROBOT LEARNING ON NVIDIA ISAAC

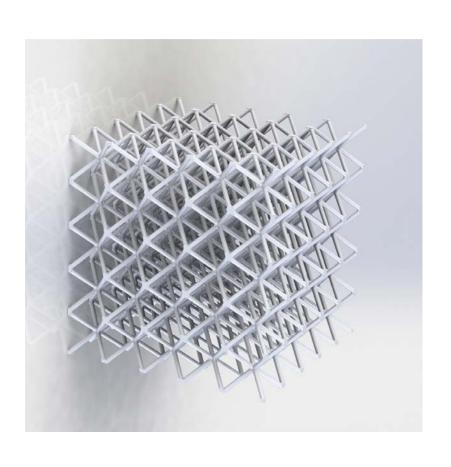
Sim-to-Real in NVIDIA Isaac

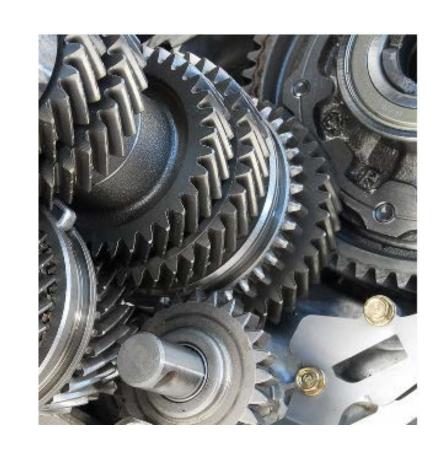
- NVIDIA Isaac provides platform for robot learning: physically valid simulations and reinforcement learning
- GPU acceleration for simulations and reinforcement learning
- Modular/hierarchical learning is essential for adaptivity to different tasks and environments
- Domain knowledge in form of existing controllers is essential
- Sim-to-real algorithms are needed for efficient domain adaptation

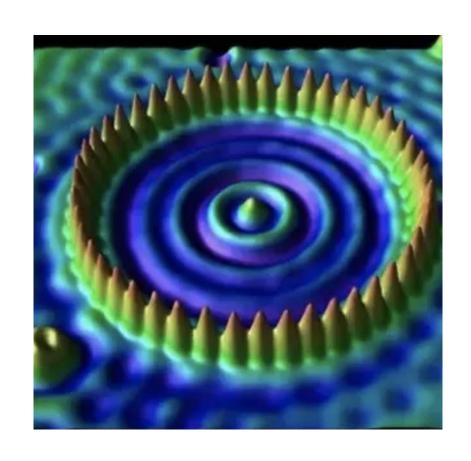


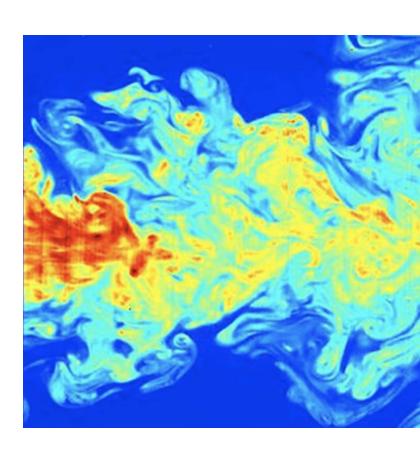
PDE AS FOUNDATION FOR SCIENTIFIC MODELING

- The physical world is governed by equations.
- Problems in science and engineering reduce to PDEs.

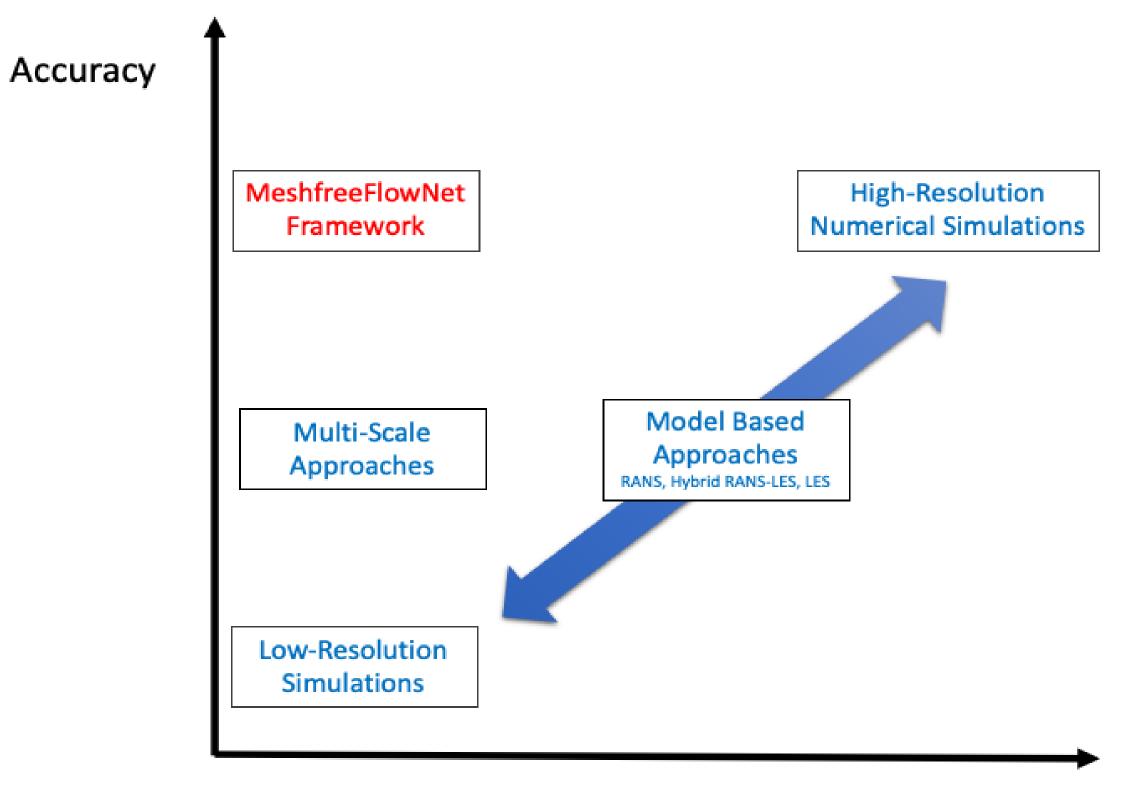








LANDSCAPE OF PDE SOLVERS



Computational Cost

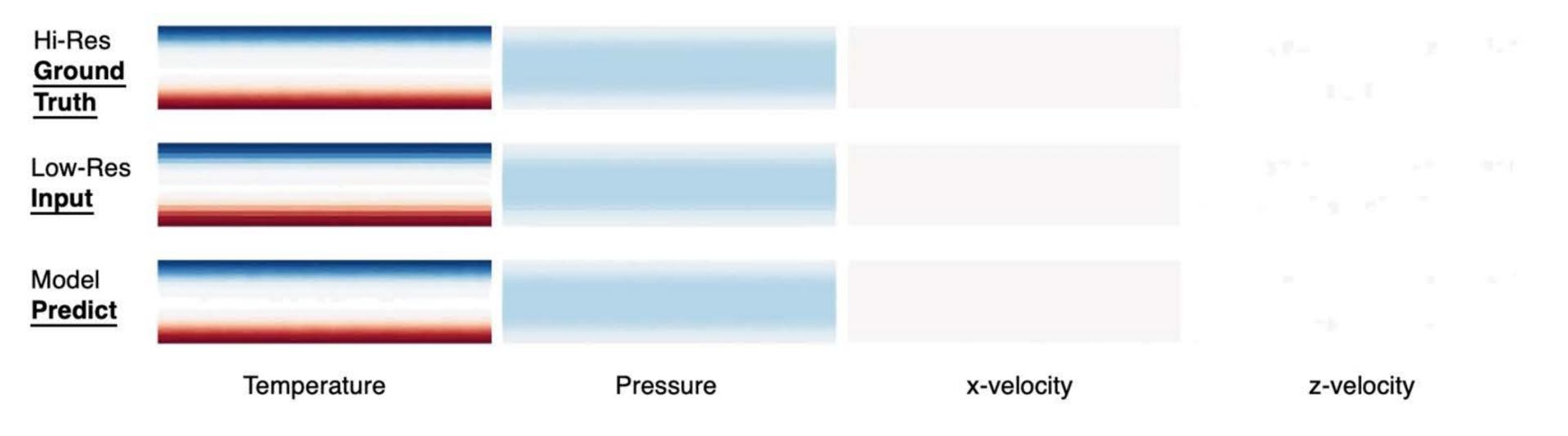
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework

Chiyu "Max" Jiang¹, Soheil Esmaeilzadeh², Kamyar Azizzadenesheli³, Karthik Kashinath⁴, Mustafa Mustafa⁴, Hamdi A.Tchelepi², Philip Marcus¹, Prabhat⁴, Anima Anandkumar^{3,5}

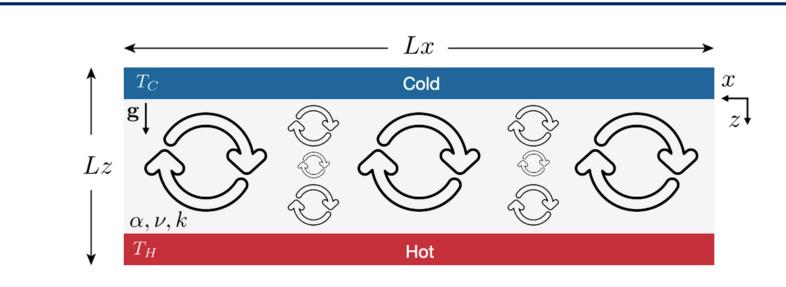
> ¹ University of California Berkeley ² Stanford University ³ California Institute of Technology ⁴ Lawrence Berkeley National Laboratory ⁵ NVIDIA



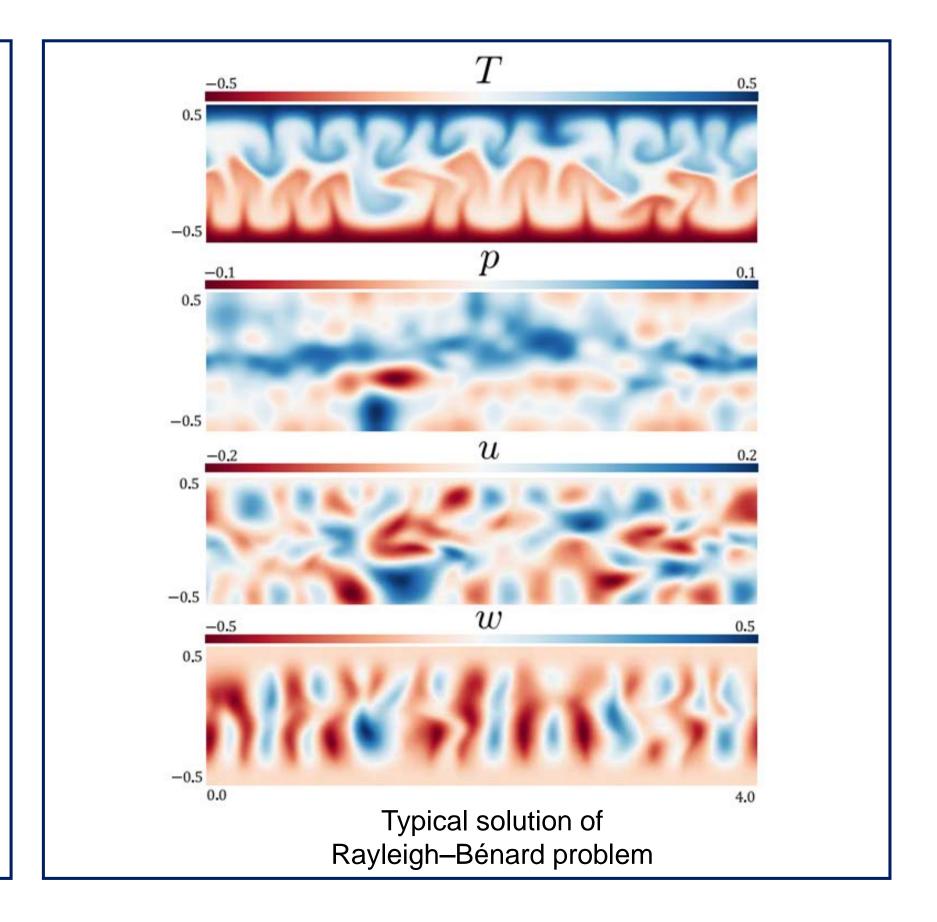
MESHFREE-FLOWNET DEMONSTRATION



RAYLEIGH-BÉNARD CONVECTION PROBLEM



$$\begin{split} &\nabla \cdot \mathbf{u} = 0\,, \\ &\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - P^* \nabla^2 T = 0\,, \\ &\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p - T \hat{z} - R^* \nabla^2 \mathbf{u} = 0\,, \\ &P^* = (Ra Pr)^{-1/2} \qquad Ra = g\alpha \Delta T L^3 \nu^{-1} \kappa^{-1} \\ &R^* = (Ra/Pr)^{-1/2} \qquad Pr = \nu \kappa^{-1} \end{split}$$



MESHFREE-FLOWNET - OVERVIEW

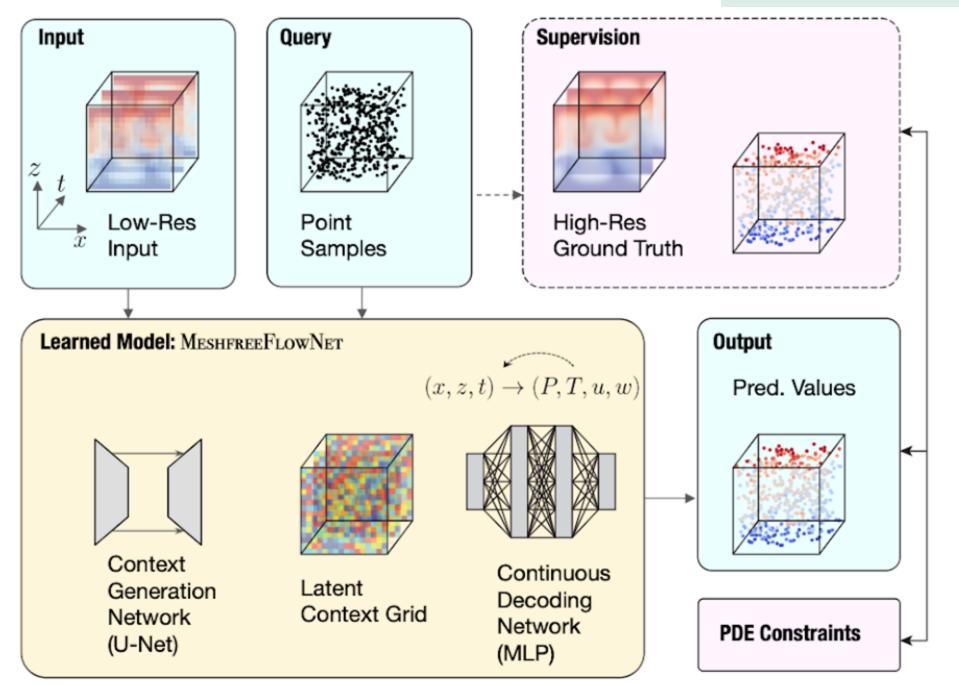
Loss Functions:

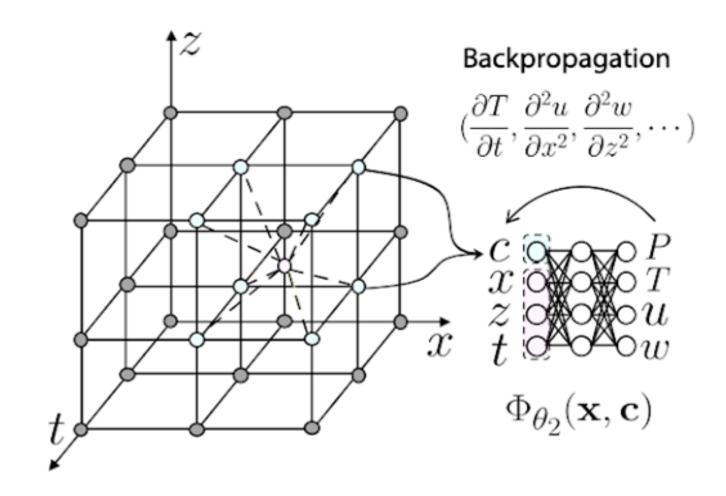
$$\mathcal{L}_e = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \frac{1}{||B^i||} \sum_{j \in \mathcal{B}^i} ||\Gamma_{\Phi} \hat{\boldsymbol{y}}_j^i - s||_l$$

$$\mathcal{L} = \mathcal{L}_p + \gamma \mathcal{L}_e$$

Prediction Loss

$$\mathcal{L}_p = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \frac{1}{||B^i||} \sum_{j \in \mathcal{B}^i} ||\boldsymbol{y}_j^i - \hat{\boldsymbol{y}}_j^i||_l$$



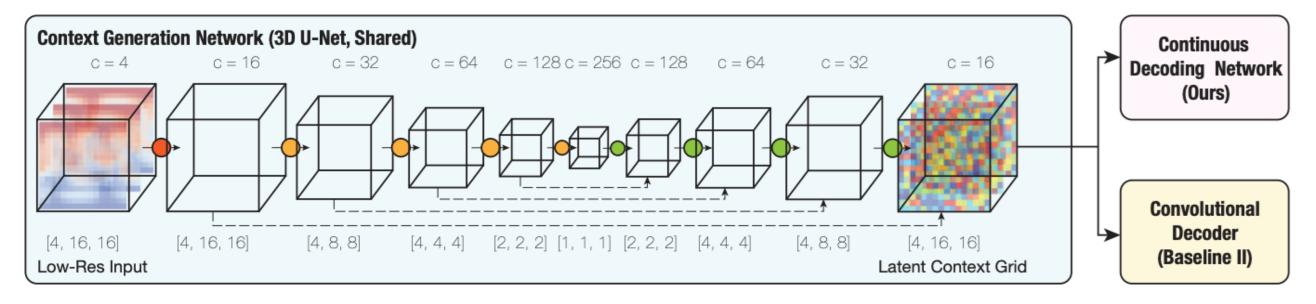


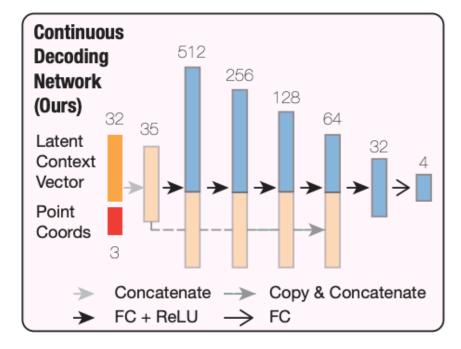
MESHFREE-FLOWNET - ARCHITECTURE

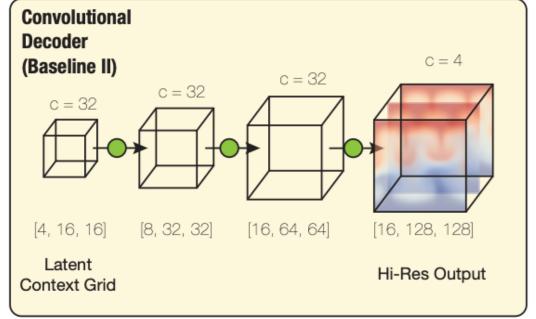
Continuous Decoding Network

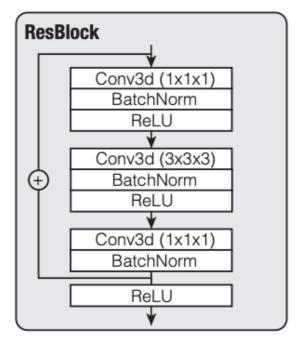
Context Generation Network

$$egin{align} \Phi_{ heta_2}(oldsymbol{x},oldsymbol{c}), & \mathcal{C}(oldsymbol{x}_i,\mathcal{G},\Phi_{ heta_2}) = \sum_{j\in\mathcal{N}_i} w_j \Phi_{ heta_2}(rac{oldsymbol{x}_i-oldsymbol{x}_j}{\Deltaoldsymbol{x}},oldsymbol{c}_j) \ & \mathcal{G} = \Psi_{ heta_1}(\mathcal{D}_L) \end{aligned}$$

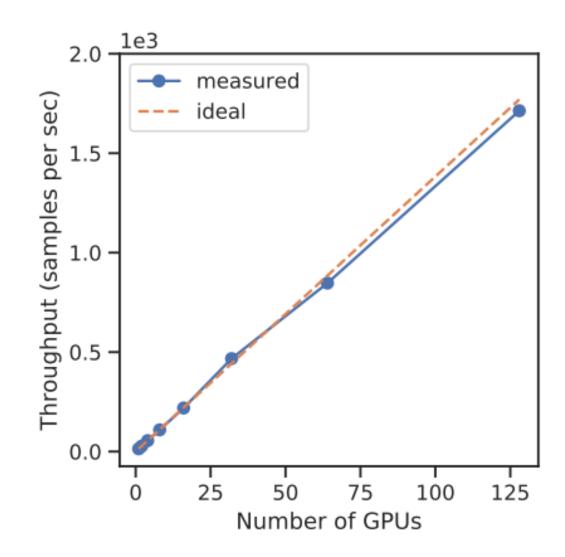




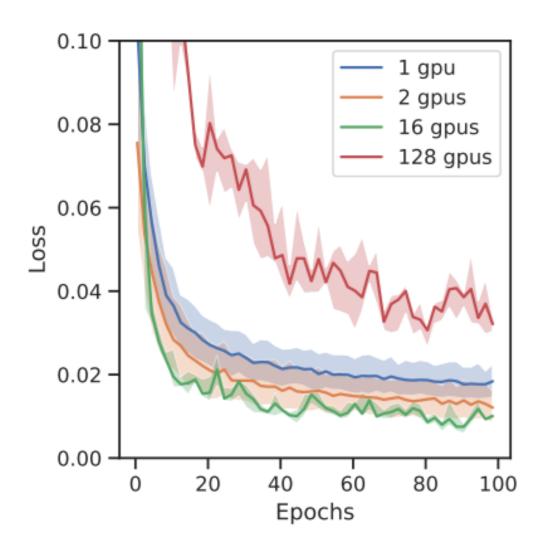




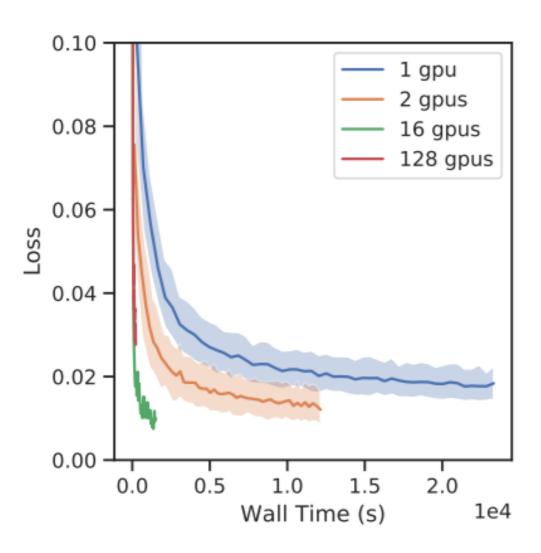
SCALABILITY



(a) Throughput vs. Num. of GPUs



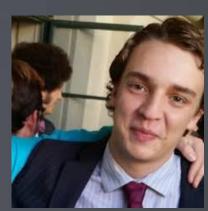
(b) Loss vs. Num. of Epochs



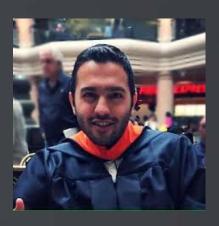
(c) Loss vs. Wall Time

OPERATOR LEARNING FOR PARAMETRIC PDE

Zongyi Li



Nikola Kovachki Burigede Liu



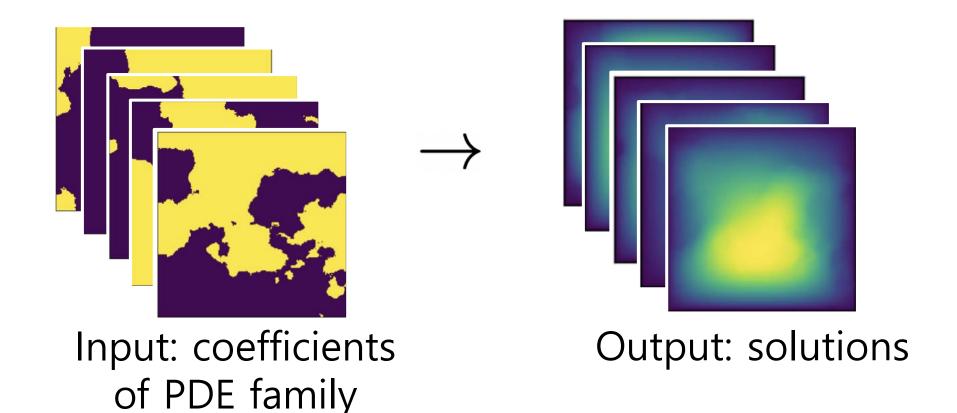
Kamyar Azzizadenesheli

Kaushik Bhattacharya

Andrew Stuart

OPERATOR LEARNING FOR SOLVING PDE

- So far, solved super-resolution problem but requires low-resolution input.
- Now: <u>Learn operator mapping coefficients</u> of parametric PDE to solution

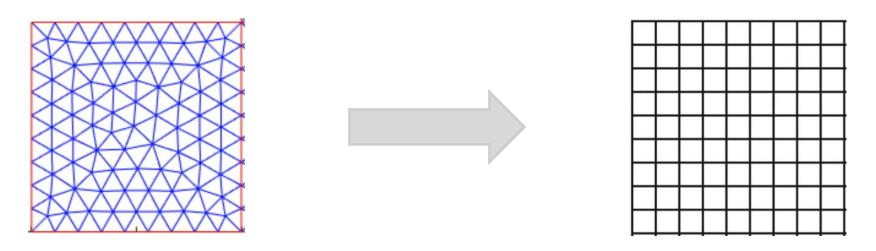


Slower to train. Fast to evaluate.

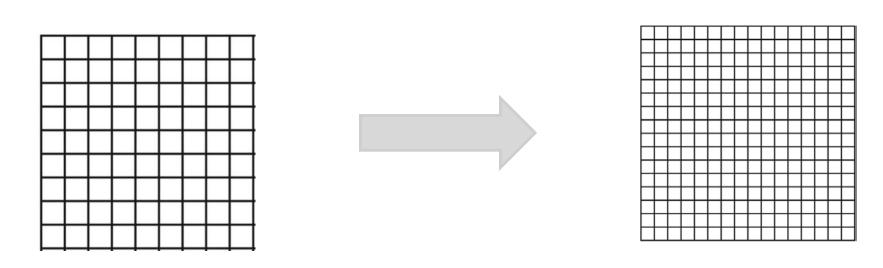
OPERATOR LEARNING

Traditional DL-based methods learn a vector-to-vector mapping. Operator learning aims to learn a function-to-function mapping.

Any discretization
 Any geometry



Super-resolution



KERNEL METHOD FOR OPERATOR LEARNING

Second order elliptic PDE:
$$-\nabla \cdot (a(x)\nabla u(x)) = f(x), \quad x \in D$$

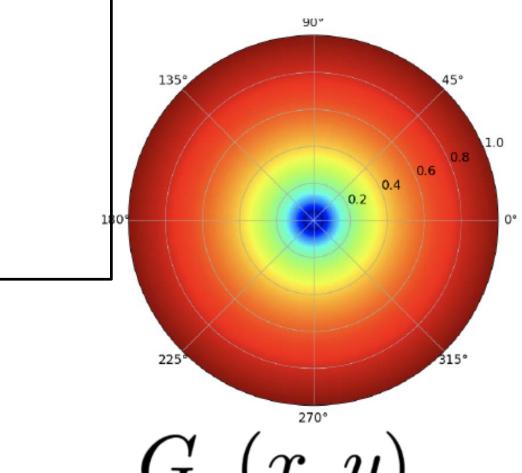
$$u(x) = 0, \qquad x \in \partial D$$

Solution of PDE can be written as convolution over Green's function

$$u(x) = \int_D G_a(x, y) f(y) dy.$$

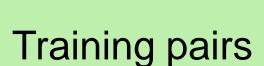
Where G is the green function

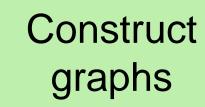
- Approximate the kernel by a neural network
- Approximate convolution as message-passing on neighborhood graph

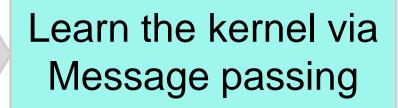


GRAPH NEURAL NETWORKS FOR PDE

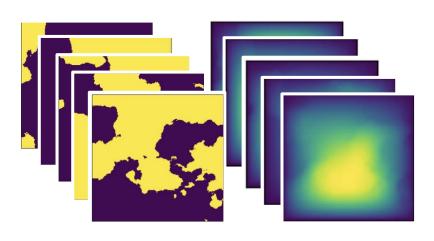
Testing: query any location



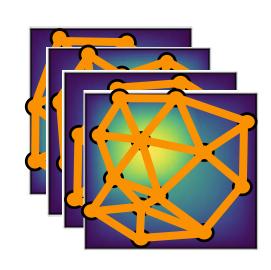


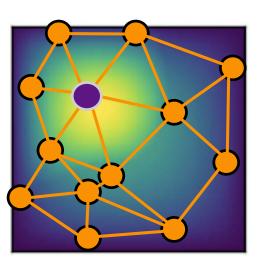


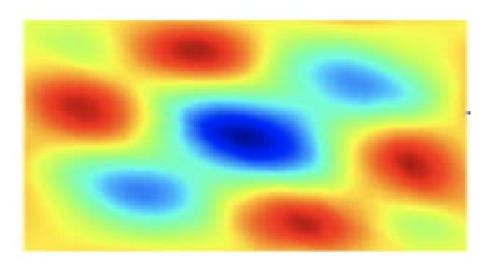
Evaluate kernel at all query locations



Input: coefficients of PDE family

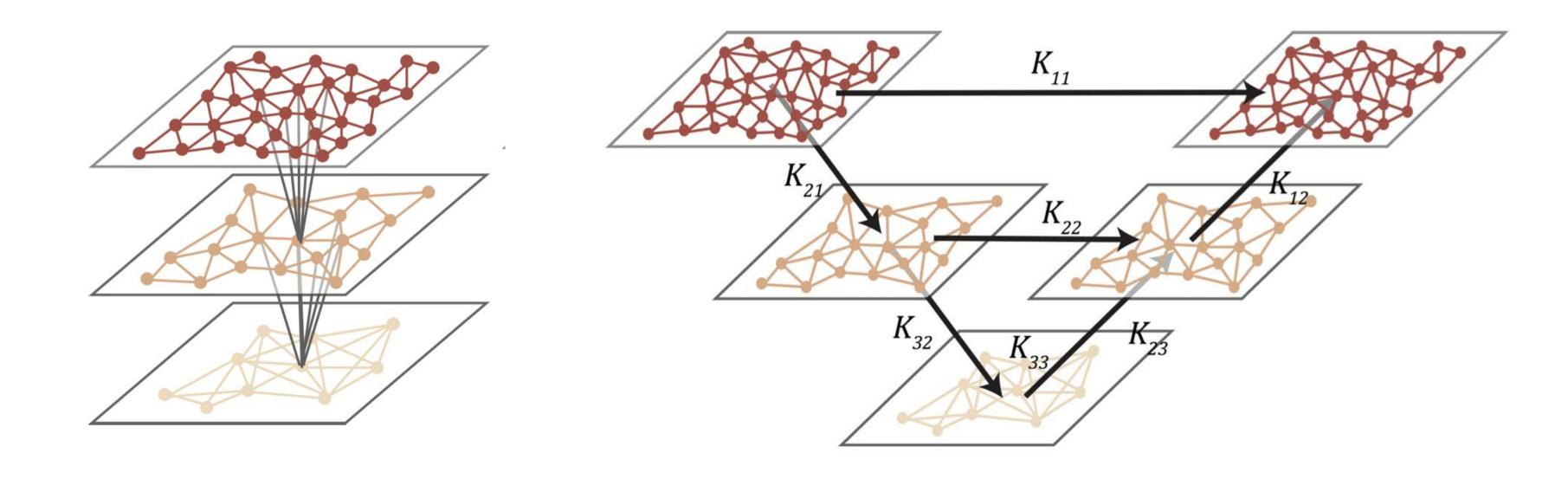




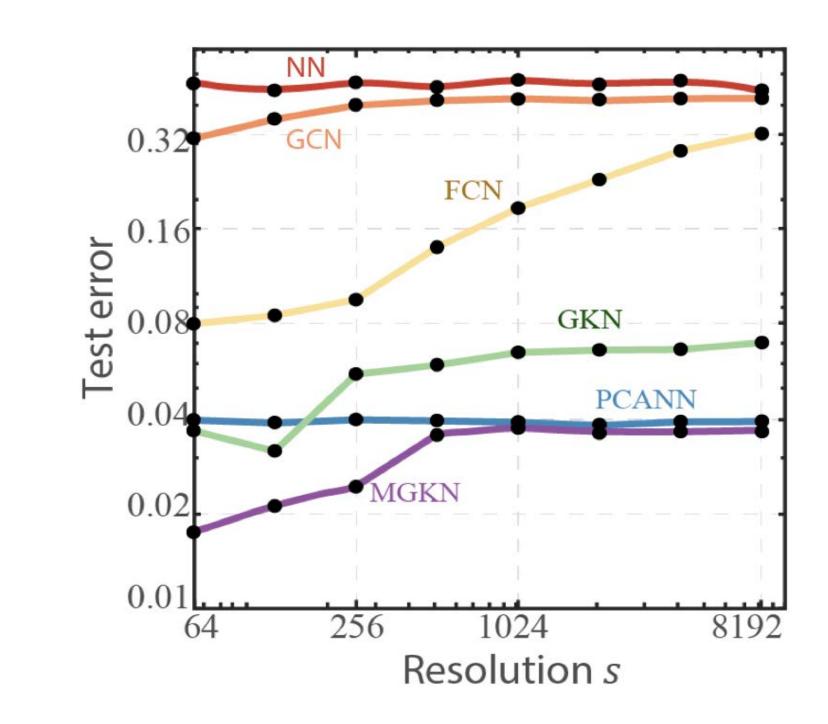


MULTIPOLE GRAPHS

- Multi-scale graphs to capture different ranges of interaction
- Linear complexity



EXPERIMENTAL RESULTS

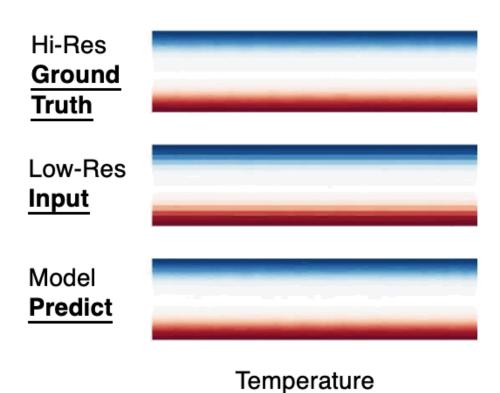


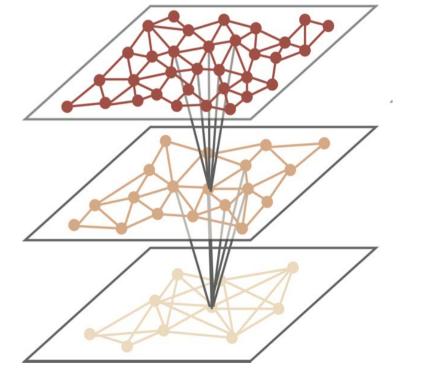
- MGKN has best error and low computational complexity.
- Able to solve PDE from scratch

SUMMARY

Principled approaches for data-driven PDE solvers

- Meshfree neural networks enable super-resolution with low computational cost
- PDE constraints preserve physical validity
- Operator learning solves PDEs from scratch in any resolution
- Multipole graphs can capture long-range correlations





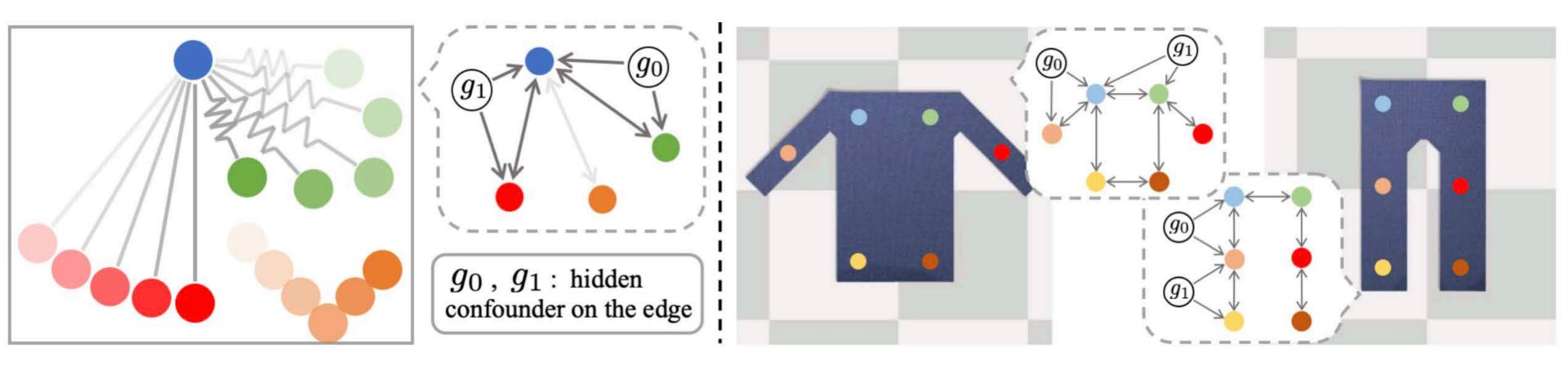
Yunzhu Li

Antonio Torralba

Dieter Fox

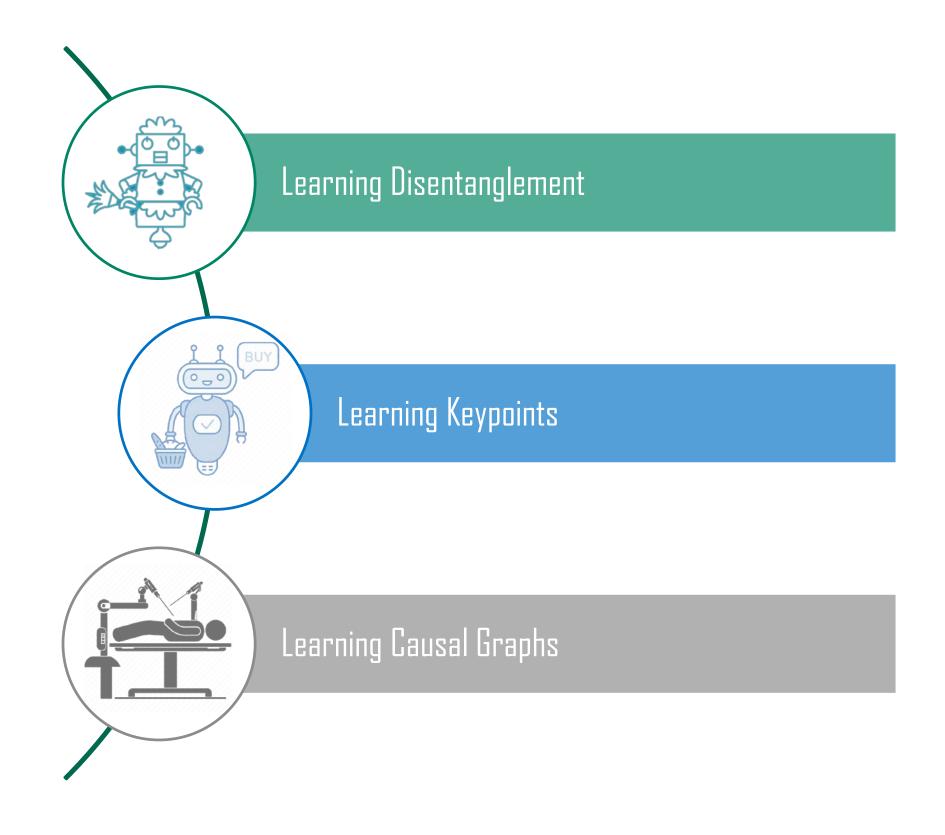
Animesh Garg

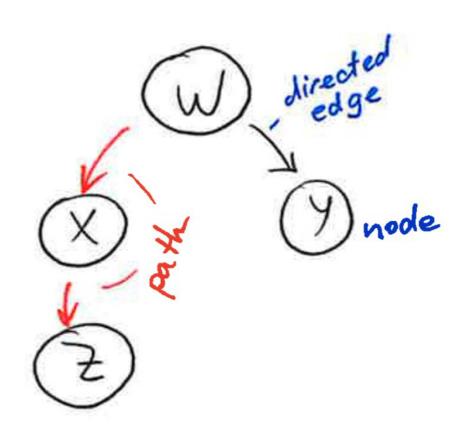
MANY EXAMPLES OF CAUSAL SYSTEMS



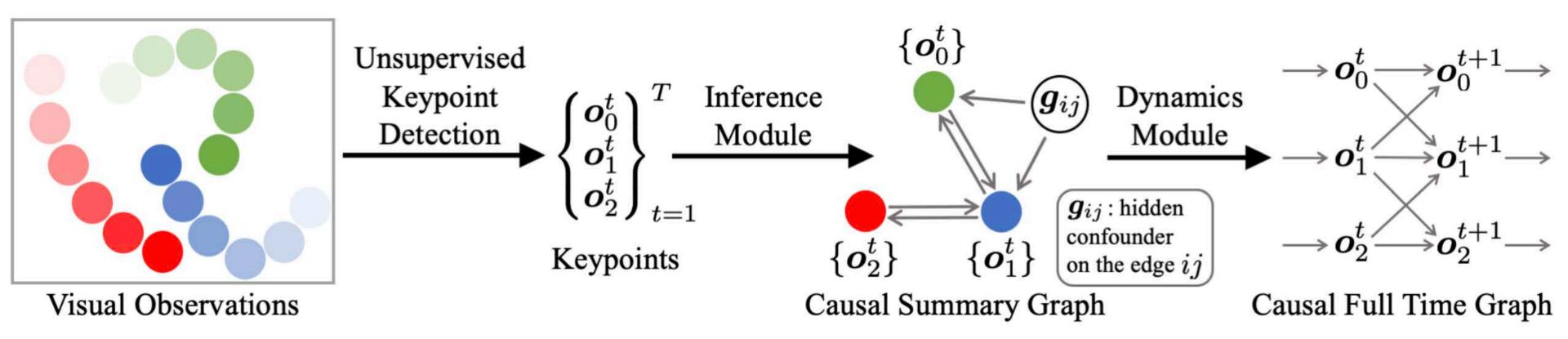
- Learning causality vs correlations
- Hidden variables
- Learning from visual data: high dimensional

COMPOSITIONAL REPRESENTATIONS





LEARNING CAUSALITY

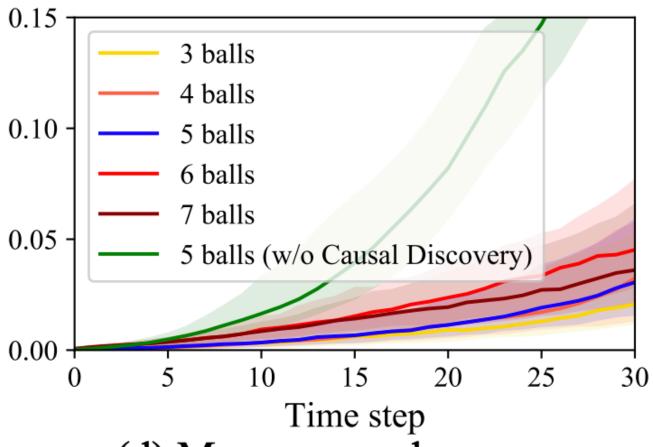


PERFORMANCE ON CLOTH SIMULATION

PERFORMANCE ON CLOTH SIMULATION

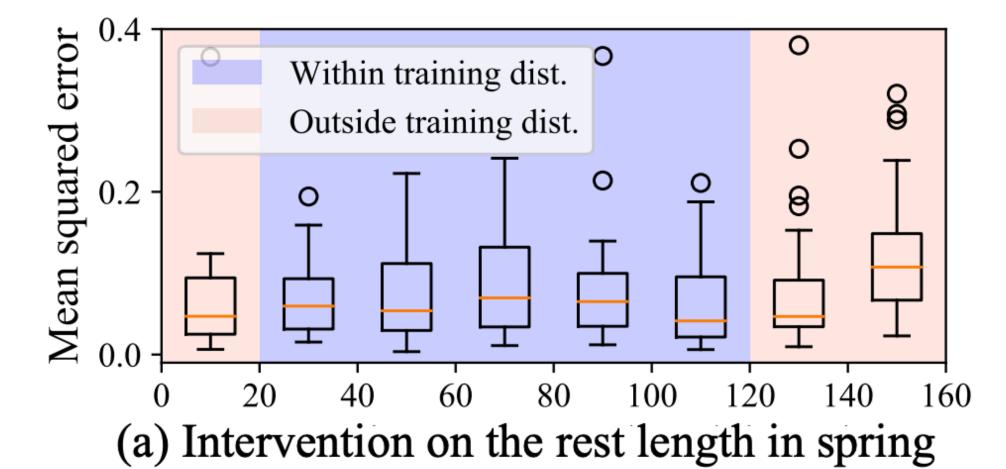
RESULTS ON BALL COLLISIONS

Extrapolation



(d) Mean squared error on future prediction

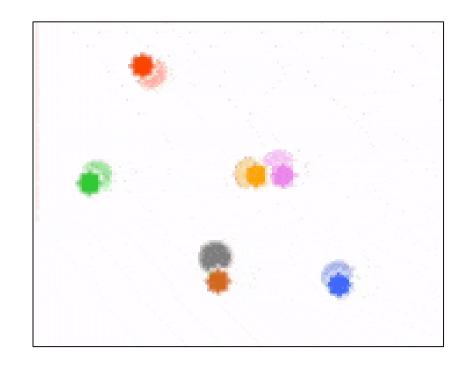
Counterfactual

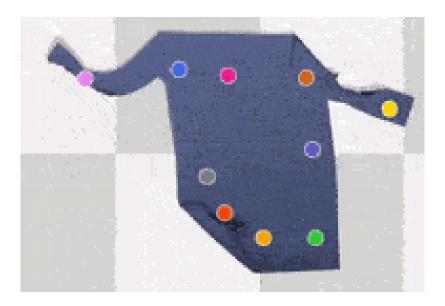


SUMMARY

Causal learning from videos

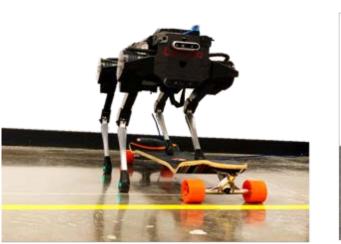
- Learning from high-dimensional videos is challenging
- Keypoint detection provides dimensionality reduction
- Graph neural networks to infer interactions
- Learning on different configurations allows for causal learning

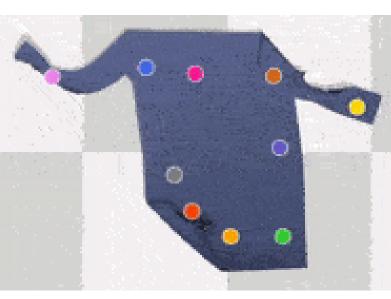


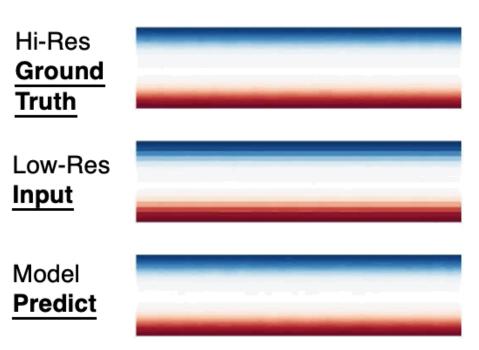


CONCLUSION

- Al4control requires preserving stability and safety guarantees
- Robust learning guarantees safe exploration and planning
- NVIDIA Isaac enables physically valid simulations for robot learning
- Deep learning can speed up or even completely replace traditional PDE solvers
- Meshfree neural networks enable super-resolution
- Operator learning can completely replace traditional PDE solvers







Temperature

