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Outline

* Magnetic nanoparticle heating

* Magnetic nanoclusters for treating cancer

 CRISPR/Cas9 genome editing for curing SCD
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Biomedical Applications
of Iron Oxide Magnetic Nanoparticles (MNPs)

AMF HEATING
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Iron oxide NPs are non-toxic
Fe3O4, V-F6203, Fe1_xO

The phospholipid-PEG
coating is biocompatible

Different core sizes, 6nm —
40nm

Different coating thicknesses,
PEG 750, 1000, 2000, 5000

Stable coating, uniform size

Fe(acac)s + 1,2-alkanediol + 2000405 r“""”’“"S{>
RCOOH + RNH, + Solvent | — —
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Magnetic Nanoparticle Heating

o « Magnetic iron oxide nanoparticles

< / (MNP) generate heat under an

% o / B-000T alternating magnetic field (AMF)

g //ﬁ \\ * The dependence of specific

£ AN absorption rate (SAR) on MNP

T é 43 &\___‘“::ﬂ____ size has attracted extensive studies
s 6 T 8 oo . Atheory developed in 2002 by R.E.

Particle radius, R (nm) Rosensweig (cited >2700 times)

predicted that the peak of SAR
occurs at ~14 nm, with large
decrease of SAR below or above
this critical size
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Rosensweig, R.E., 2002
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'RICE Iron Oxide Nanoparticles 2 2
Magnetite (Fe;O,) and Maghemite (y-Fe,O;)
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SAR Measurements

« For measuring SAR, MNPs
dispersed in an aqueous solution
were exposed to an alternating
magnetic field generated with two
different inductive coils at a fixed
frequency (f = 325 kHz)

* The average field strength H
applied to the solution was 9.35
KA/m or 20.7 kKA/m

|
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N
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£
K % * The temperature of the ferrofluid
, & was measured as a function of
IO time and the slopes of the heating
D=25cm,H=3cm D=5cm, H=3cm profiles were used to calculate the
7.5turns, | =115 A 5turns, | =130 A SAR ValueS

Tong S et al, ACS Nano, 2017
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Challenge to the Classical Theory

3000 A

e 19 KA/m 4000 1
e \Water
e 9.35 KA/ }
—_ m i e Glycerol, 50% ¢ ®
I_‘I‘_’ mn 3000 -
o 2000 ® ,_;’ ) I
= S ) :
E E 2000 - ]
< e (14
@ 1000 e & f,t) .
° :
. o 1000 -
o
o
0+—o0 8 . . . 0 o0 9o ; . .
0 10 20 30 40 0 10 20 30 40
Size (nm) Size (nm)

 The monotonic increase in SAR for MNPs < 40nm is in sharp contrast
with the classical theory and some of the previous findings that SAR
decreased when the size of MNPs becomes >15 nm

* Independent measurements in the Bischop lab confirmed our
results

Tong S et al, ACS Nano, 2017
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Micro-hysteresis Curves at 300K
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The classical linear response theory
(LRT) assumes that

M (t)=Re[ xH e

which neglects hysteresis

Tong S et al, ACS Nano, 2017
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Modified Dynamic Hysteresis Model

A = 3.53ugMsHpqx(1 — 0.7k)  A: Heat generated by MNPs

. __ KgT KgT . . L
K = p— In PRRgg— , Kaanisotropy constant, Mg saturation magnetization
A HoMsVHfTo 70 =1 X 1010 s, y, magnetic permeability of vacuum

A 4
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Tong S et al, ACS Nano, 2017 Nondimensional parameter, x
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Our New Model Works Much Better
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Tong S et al, ACS Nano, 2017
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In Vivo Magnetic Nanoparticle Heating
in Tumor Tissue

Maximum temperature in tumor
during heating
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Solutions containing 50 ug of Fe/mL of MNPs were infused into the center of U87
tumors on the flank of mice. Magnetic field was applied for 1 h at 9.35 kA/m
and 325 kHz. Note that the temperature of the tumor was lower than normal

(~36.9° C) due to anesthesia.
Tong S et al, ACS Nano, 2017
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Nanocluster Size

RICE Magnetic Nanoclusters

| 55 m 45 n | 3 nm

Bioengineering

Iron oxide nanoclusters (IONCs)
composed of tens to hundreds of
sub-10 nm iron oxide nanocrystals
aggregated into larger, porous
nanoclusters

It's nano-size, in combination of
superparamagnetism and large
magnetic volume, offer unique
properties such as high heat
generation and MRI contrast

The biomedical applications of
IONCs have not been well
explored
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Magneto-thermotherapy

IONC-AAPH
Free radical
el * ¥y

Applying ¥ &
alternating
magnetic field

CHs (‘:Hg THS
NH \ NH  Heat M
HoN | | NH, HoN |
CHs CHs CHs
AAPH Free radicals

AAPH is a water-soluble azo
compound that can
decompose and generate
carbon-centered free radicals

The decomposition rate of
AAPH increases dramatically
with temperature when the
temperature is higher than
400°C.

The carbon-centered free
radicals generated by AAPH
are highly reactive and can
damage lipids, proteins, DNA,
and other biomolecules

IONCs of 40 nm (with 6 nm primary MNPs) were coated with poly(AA-co-AMPS)-PEG for
water-solubility and loading of AAPH to the carboxyl group of the coating

Zhang et al, ACS Nano, 2022
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Heat and free-radical generation
IONC-AAPN was under AMF (H = 9.35 kA/m and f = 320 kHz) for 1 hour

40 nm IONCs with 6 nm primary MNPs Free radical generation by IONC-AAPH
600 - — Ctrl
© B 5 19 ——IONC
@ N 'IONC-AAPH
2400- g 125 ——IONC + AMF
= S 1\| ——IONC-AAPH + AMF
v o
= 2 08-
o 200+ 2 A\
< 0.4 ~
0 —_ . /\
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Wavelength (nm)

- ABTS reacts with the free radicals generated by AAPH and forms ABTS*
« ABTS* has characteristic absorbance between 400-900 nm
 The absorbance peak is at 734 nm

Primary MION IONC

Zhang et al, ACS Nano, 2022
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Free radical generation and cell-killing by
IONC-AAPH in cell culture

Flow cytometry analysis of free radicals in MC-38 cells via fluorescence from DCF
H,DCFDA, a cell-permeant compound, was delivered to cells. Upon oxidation by free
radicals, the non-fluorescent H,DCFDA is converted to highly fluorescent DCF

Ctrl AAPH IONC IONC-AAPH IONC + AMF  IONC-AAPH + AMF
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DCF fluorescence (a.u.)
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Fluorescence images of MC-38 cells co-stained for live cells (green) and dead &
cells (red) with different treatments under normoxic and hypoxic conditions

Ctrl AAPH IONC IONC-AAPH IONC + AMF  IONC-AAPH + AMF

Free radicals (DCF) ¥ 9

Cells were
incubated with
IONC-AAPH for
1 h for deliver
followed by
exposure to
AMF for 1 h

Normoxia

Hypoxia

Zhang et al, ACS Nano, 2022
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" Mechanisms of IONC-AAPH mediated cell killing

v-H2AX foci assay to quantify DNA damage due to IONC-AAPH
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Anti-tumor effect of IONC-AAPH in vivo

Before heating After heating

6 groups of mice (n = 3)

5 x 105 MC-38 - ,
g™ Intratumoral injection of: Mice were
g 1) Saline b f .
2) AAPH subjected to
3) and 5) IONCs ‘ AMF (H=9.35
} 4) and 6) IONC-AAPH kA/m and f =
Apply AMF: 5) and 6 ‘
Inﬁ')epc%lion volur)ne =6 / 320 kHz) for
I I mL per mouse 80 min
Day 0 Day 14

Tumor inoculation Tumor treatment Monitor tumor growth

Tumor growth curves Tumors @ end point Weights of excised tumors
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E 800 4 IONC-AAPH 169 o
Y —e—IONC + AMF IONC @ @ a {_
E 600 | —*—1ONC-AAPH + AMF g 5 127 .
S iy IoNC-AAPH ) @@ @ £ .
S 400 - s/ 3 2 0.8+ °
£ = "4 : 5 *
2 IONC + AMF & ® & g .
200 4 ~ 0.4+
N IONC-AAPH + AMF® € m *Te
0 . anm,
(IR O PO A IIIW!I G 0 T T T T T ) ¢
A N NP sy PEF I Eaa
Days post tumor inoculation | » LLODIS3A ® ¢ ¥ OR? Oxv Q\xv
S
oé

MC-38 is a colon cancer cell line
Zhang et al, ACS Nano, 2022
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suppresses cancer metastasis

Metastasis is the predominant cause of cancer deaths (~80%) due to solid tumors, however
anticancer drugs are not effective in treating metastatic cancer

5 x 105 MC-38 cells
(primary)

Intratumoral injection of: 6 groups of mice (n = 8):

¥ i. Saline i. Saline
o iii-vi. IONC-AAPH ii. Ant-PD-1
1x105 into the primary tumor
MC-38 cells . IONC-AAPH .
(secondary) Apply AMF: v and vi iv.  IONC-AAPH + anti-PD-1
/ v. IONC-AAPH + AMF
IP injection of anti-PD-1: ii, iv, and vi vi. IONC-AAPH + AMF + anti-PD-1
| on Day 8, 11, and 14
Day 0 Day 7
Inoculation of primary and Treatment of Monitor the growth of the
secondary tumors primary tumor secondary tumor
1200 - .
—e—Saline 1004— —- Saline Kk
Anti-PD-1 Anti-PD-1 Hxx
7 900 4 —e—|ONC-AAPH
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g ZJ_ (] —*— |ONC-AAPH + AMF + anti-PD-1
2 300 ) ]
€3
0 ¢ 04+~ A—/ T T T |
0 5 10 15 20 25 015 20 30 40 50 60
Days post tumor inoculation Days post tumor inoculation

» The percentage of CD3*CD8* T cells in the secondary tumors increased in the mice injected
with IONC-AAPH

« The number of antigen-specific interferon-y producing T cells was significantly higher in the
mice treated with magneto-immunotherapy, 4.5-fold higher than that of control

Zhang et al, ACS Nano, 2022
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Infiltrating CD8+ T Cells in Secondary Tumors

Saline Anti-PD-1 IONC-AAPH
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10 days after treating the primary tumor, cells in the secondary tumor without any
treatment were harvested for flow cytometry analysis

The percentage of CD3*CD8* T cells in the secondary tumors increased by >2-
fold in the mice injected with IONC-AAPH under AMF

Zhang et al, ACS Nano, 2022



: RICE Bioengineering
| Tumor antigen-specific T cells
determined by ELISpot assay

Enzyme-linked immunospot assay

B - \ 800 4 [ Saline
No peptide ‘ Anti-PD-1
. ' IONC-AAPH
(- ; ' ‘ IONC-AAPH + anti-PD-1
. ‘ - : i \ 600 — IONC-AAPH + AMF
. ' _— A . [ ]IONC-AAPH + AMF + anti-PD-1
OVA peptide i ! :

400

TAA peptide . - N )

IFN-y producing cells per 10° cells

T
No peptide OVA peptide TAA peptide

* The splenocytes were harvested and stimulated for 24 h with KSPWFTTL, a
tumor-associated antigen (TAA) peptide. OVA: peptide SINFEKL

* In the mice treated with magneto-immunotherapy, the number of antigen-specific
interferon-y producing T cells was 4.5-fold higher than that of control

ACS Nano, Nov, 2022
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Magneto-immunotherapy can suppress
tumor recurrence

Nanocluster distribution 16 days post
2 groups of mice (n =3): injection
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Safety of IONC-AAPH in cancer therapy

H&E staining of major organs 24 h after treatment,
showing no tissue damage due to IONC-AAPH

Saline

AAPH |

IONC-AAPH '

IONC + AMF

IONC-AAPH + AMF £~

Zhang et al, ACS Nano, 2022

Evaluation of liver function (ALT, AST,
& ALP in plasma) and kidney function
(BUN in plasma) at end point
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Companies Have Developed Large Systems
for Applying Alternating Magnetic Fields

MagForce AG, a publicly traded company in Berlin, Germany
https://www.magforce.com/en/home/our_therapy/
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Genome Editing — To Precisely

Modify A Genome
Engineered nuclease cuts DSB
DNA at a user-defined site DNA
DNA Repair Pathways
Error-prone repair Programmed repair
Non-homologous end joining Homology-directed repair
(NHEJ) (HDR)
» Gene disruption » Gene editing / correction

» Targeted DNA deletion  Targeted gene insertion/tagging
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Ex Vivo versus In Vivo Therapeutic Genome Editing

S . Ex Vivo Genome Editing:
delivery is easier but target
cells must be capable of
surviving outside the body
and homing back to target
tissues after transplantation

Removal of cells

@ Correction of cells

Autologous

transplantation @

of corrected cells PSR c T

T
Ll

In vivo — * In Vivo Genome Editing:
ystemic . . . .
o 4 With in vivo systemic

b4 delivery, high efficiency and

; tissue specificity is a
challenge, and local
injection might not give the
desired distribution

Cox et al., Nature Medicine (2015)
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Sickle Cell Disease (SCD)

Cause: A-T mutation in the beta-globin gene. It occurs when
a person inherits two mutant copies of the beta-globin
gene, one from each parent e

-

Statistics: Sickle Coll Anomia
« SCD affects over 20 million people worldwide,

including ~100,000 in the U.S., resulting in ~120,000
deaths every year

Treatment:
« Bone-marrow transplantation is the only cure
* Only ~15% of SCD patients could have a matching donor
* No cure for the majority of patients

Platt et al., N Engl J Med (1994) http://www.cdc.gov/ncbddd/sicklecell/data.html
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Genome Editing Approaches for Curing SCD

* Disrupting BCL711A enhancer in SCD HSPCs'>

« Correcting HBB sickle mutation in SCD HSPCs
- Using AAV6 donor34>
- Using ssODN donor®’

« Base editing of SCD HSPCs

- Base editing of BCL11A enhancer?®
- Conversion of sickle allele in HBB (HBBS) to Makassar

B-globin (HBB®© )°

"Wu et al, Nat Med. 25:776-783 (2019); Frangoul et al, N Engl J Med. 384:252-260 (2021);
3DeWitt et al, Sci Transl Med. 8:360ra134 (2016); “Lattanzi et al, Sci Transl Med. 13:eabf2444
(2021); °Dever et al, Nature 539:384-389 (2016); Humbert et al, Sci Transl Med. 11:eaaw3768

(2019); 6Park et al, NAR. 47:7955-7972 (2019); 7Zeng et al, Nat Med 26:535-541 (2020);
8Newby et al, Nature 595:295-302 (2021)
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Gene Correction for Treating SCD

Approach: Use CRISPR/Cas9 to generate a DSB near the mutation site,
activate homology directed repair, correct the A-T mutation using donor DNA
template

Isolate CD34+ Deliver CRISPR
- HSPCs RNP + donor
target DNA / J Gc/ JRAM .

] N
; ,. s

GAUGUAGUGU'UU GGGGGGGGGGGGGGGGG

sl IIII

3’ -GCCUGAUCGGAAUAAARAUU CGAUp

- y Patient v ot s
P with SCD editing

Infuse gene-edited HSPCs
back to patient

|solate hematopoietic stem and progenitor cells (HSPCs) from a SCD patient
Damage the remaining HSCs in the patient using radiation or chemotherapy
Deliver CRISPR/Cas9 and wild-type donor template into HSPCs for gene correction

Deliver back the gene-edited HSPCs to the patient, produce normal red blood cells to
replace sickle cells

A few percent of gene-corrected HSCs can re-generate the who blood system
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HBB Gene-editing to Cure SCD

* We have systematically optimized CRISPR gRNA and
single-stranded DNA donor template (ssODN) designs

« Edited SCD CD34* HSPCs by delivering Cas9/gRNA
ribonucleoprotein (RNP) complex and corrective ssODN
template using electroporation

* Achieved high rates of gene correction (HDR) in HSPCs
from patients with SCD, and a high level of HbF induction
by Cas9 cutting only

« Performed a genome-wide unbiased off-target analysis and
significantly reduced off-target effects

 Demonstrated a good level of engraftment of gent-edited
SCD HSPCs in immunodefficient NSG mice

Park et al, NAR, 2019
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Gene Correction of CD34* HSPCs from
5 SCD Patients
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The results of HBB gene correction
in CD34+ HSPCs from five SCD
patients using gRNA/Cas9 RNP and
SCDct5-wt ssODN.

Park et al, NAR, 2019
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SCD HSPCs after gene editing
were differentiated for 3
weeks. At day 21, sickled cells
were counted and the
percentage of sickled cells
quantified
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Gene Correction of SCD CD34* HSPCs
Induced a High Level of Normal Beta-globin

{Mock RNP RNP+ssODN
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o
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5.0 Mirrfjtes 10.0 12550 M:‘ﬁites 100 12540 Mi?rfjtes 10.0 125 Delivery OngNA/CaSQ RNP Only
into SCD HSPCs induced a high
HPLC trace showing hemoglobin production level of HbF expression
after 21 days of differentiation of gene-edited
SCD HSPCs

HbF
Hba&
Hba2

Park et al, NAR, 2019
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Engraftment studies for IND application
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GPH101: Gene Correction in
autologous CD34+
hematopoietic stem cells (HbS
to HbA) to treat severe sickle

cell disease (Matt Porteus and
Graphite Bio)

CRISPR_SCDO001:
Transplantation of CRISPR
modified hematopoietic
progenitor stem cells in
patients with severe sickle cell
disease (Mark Walters)

Up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing
20% gene correction with multilineage engraftment in NSG mice

Lattanzi et al, Sci Transl Med. 2021
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Unintended Large Gene Modifications

(X) On-target cut-site
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Large deletion —— : —— > 200 bp
| G
— S
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* On-target DNA DSBs could induce large deletions/insertions and complex
local rearrangements, which may have pathogenic consequences

« Large deletions/insertions cannot be detected by short-range PCR and
targeted deep sequencing due to loss of primer binding sites
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Large Deletions/Insertions at the On-target
Cut-site Quantified by SMRT-UMI
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Relative position of large deletion (bp) 2.4%

Park et al, Sci Adv 2022 UMI - Unique Molecular Identifier



RICE Bioengineering

Large Insertions at HBB On-target
Cut-site due to R-66S RNP

Large Insertions
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Park et al, Sci Adv 2022
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Large Deletions and Insertions Occurred
with Different gRNAs

gRNA Target Sequences
R-66S HBB GTAACGGCAGACTTCTCCACAGG
R-02 HBB CTTGCCCCACAGGGCAGTAACGG
SD-02 HBG CTTGTCAAGGCTATTGGTCAAGG
BCL11A BCL11A CTAACAGTTGCTTTTATCACAGG
120- '2 2000+
<2 1004 I Large Insertion -
% B Intermediate deletion @ 1500
S 80- LD B
3 BN Small INDEL 5 1 -
g 60 1 Unmodified T 0007 - -
2 404 @ ) . ¢ .
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A A A A ©
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¢ & ¥ o o o &
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Park et al, Sci Adv 2022
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Unintended Large Gene Modifications

* What is the mechanism that causes large deletions with
high frequencies?

* What are the biological consequences of large deletions
and insertions?

* How to reduce/eliminate large deletions and insertions?
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In Vivo Gene Editing for Curing Diseases

» Ex vivo gene editing for curing SCD would not be feasible for patients
IN resource-poor regions, since it requires mobilization and isolation
of HSCs from the patient for editing, chemo/radiation to damage
remaining HSCs, and infusion of gene-edited HSCs to the patient.
The estimated cost is ~$2 million per patient.

« In vivo gene editing for curing human diseases has significant
challenges, including the need to achieve high editing rate in vivo,
and the potential off-target organ/tissue editing.

* In vivo delivery using viral vectors such as AAV may suffer from
uncontrollable expression of the editing machinery, causing immune
response and genotoxicity.

« There is a need to achieve spatial and temporal control of in vivo
gene editing, to minimize off-target tissue editing and immune
response.
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Spatial Control of in vivo

Genome Editina via Nanomagnets

Magnetic
Activation
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« During in vivo delivery, baculovirus (BV)
vector is inactivated by the serum
complement system

When complexed with magnetic
nanoparticles, BV can be activated locally
with an applied magnetic field

Zhu et al., Nat BME, 2019

BV-CRISPR expression vector
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Summary

* We revealed the size-dependence of magnetic
nanoparticle heating, demonstrating that the classic
theory is incorrect for large MIONs (>15 nm)

* Magnetic iron oxide nanoclusters with AAPH have the
potential to serve as a new nanotherapeutic agent to
suppress cancer metastasis and recurrence

 We have developed gene editing based approaches for
curing sickle cell disease and the pre-clinical results are
very promising. Clinical trials are underway.
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Gordon Research Conference: Advanced Cell and
Tissue Biomanufacturing

Gordon Research Conference

(}‘L Advanced Cell and Tissue Biomanufacturing

Accelerating Cell and Tissue Manufacturing Technology
Development and Innovation Through Convergence

June 25 - 30,2023
Apply Now

Chairs Vice Chairs
Kaiming Ye and Paul Carlyle. Gang Bao and James Hoying
Goodwin

Contact Chairs

Grand Summit Hotel at Sunday
River

97 Summit Road

Newry, ME, United States

Venue and Travel Information

https://www.grc.org/advanced-cell-and-tissue-biomanufacturing-conference/2023/
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