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Outline

• Magnetic nanoparticle heating

• Magnetic nanoclusters for treating cancer

• CRISPR/Cas9 genome editing for curing SCD
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Biomedical Applications 

of Iron Oxide Magnetic Nanoparticles (MNPs)

• Iron oxide NPs are non-toxic
Fe3O4, γ-Fe2O3, Fe1-xO

• The phospholipid-PEG 
coating is biocompatible

• Different core sizes, 6nm –
40nm

• Different coating thicknesses, 
PEG 750, 1000, 2000, 5000

• Stable coating, uniform size
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Magnetic Nanoparticle Heating

Rosensweig, R.E., 2002

• Magnetic iron oxide nanoparticles 
(MNP) generate heat under an 
alternating magnetic field (AMF)

• The dependence of specific 
absorption rate (SAR) on MNP  
size has attracted extensive studies

• A theory developed in 2002 by R.E. 
Rosensweig (cited >2700 times) 
predicted that the peak of SAR 
occurs at ~14 nm, with large 
decrease of SAR below or above 
this critical size

• This theory is based on rotational 
relaxation of single-domain 
magnetic nanoparticles dispersed 
in a fluid
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Iron Oxide Nanoparticles

Magnetite (Fe3O4) and Maghemite (g-Fe2O3) 
10 nm 15 nm

19 nm 32 nm
Scale bar = 100 nm

6 nm 8 nm

25 nm 40 nm
Above presumed superparamagnetic size limit
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SAR Measurements

D = 2.5 cm, H = 3 cm
7.5 turns, I = 115 A

D = 5 cm,  H = 3 cm
5 turns, I = 130 A
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• For measuring SAR, MNPs 
dispersed in an aqueous solution 
were exposed to an alternating 
magnetic field generated with two 
different inductive coils at a fixed 
frequency (f = 325 kHz)

• The average field strength H
applied to the solution was 9.35 
kA/m or 20.7 kA/m

• The temperature of the ferrofluid
was measured as a function of 
time and the slopes of the heating 
profiles were used to calculate the 
SAR values 

Tong S et al, ACS Nano, 2017
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Challenge to the Classical Theory
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• The monotonic increase in SAR for MNPs < 40nm is in sharp contrast 
with the classical theory and some of the previous findings that SAR 
decreased when the size of MNPs becomes >15 nm

• Independent measurements in the Bischop lab confirmed our 
results 

Tong S et al, ACS Nano, 2017
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Micro-hysteresis Curves at 300K 
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The classical linear response theory 
(LRT) assumes that

which neglects hysteresis

M (t) = Re[χH0e
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Tong S et al, ACS Nano, 2017
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Modified Dynamic Hysteresis Model 
A: Heat generated by MNPs

, KA anisotropy constant, Ms saturation magnetization
t0 =1×10-10 s, μ0 magnetic permeability of vacuum

Tong S et al, ACS Nano, 2017
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Our New Model Works Much Better

Tong S et al, ACS Nano, 2017
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In Vivo Magnetic Nanoparticle Heating 
in Tumor Tissue

Solutions containing 50 μg of Fe/mL of MNPs were infused into the center of U87 
tumors on the flank of mice. Magnetic field was applied for 1 h at 9.35 kA/m 
and 325 kHz. Note that the temperature of the tumor was lower than normal 
(~36.9°C) due to anesthesia.

Maximum temperature in tumor 
during heating

Tong S et al, ACS Nano, 2017
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Magnetic Nanoclusters

• Iron oxide nanoclusters (IONCs) 
composed of tens to hundreds of 
sub-10 nm iron oxide nanocrystals 
aggregated into larger, porous 
nanoclusters

• It’s nano-size, in combination of 
superparamagnetism and large 
magnetic volume, offer unique 
properties such as high heat 
generation and MRI contrast

• The biomedical applications of 
IONCs have not been well 
explored

90 nm        70 nm         55 nm        45 nm      35 nm
Nanocluster Size   

9 nm

8 nm

7 nm

6 nm

5 nm

4 nm
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Magneto-thermotherapy

AAPH Free radicals

• AAPH is a water-soluble azo 
compound that can 
decompose and generate 
carbon-centered free radicals

• The decomposition rate of 
AAPH increases dramatically 
with temperature when the 
temperature is higher than 
40oC. 

• The carbon-centered free 
radicals generated by AAPH 
are highly reactive and can 
damage lipids, proteins, DNA, 
and other biomolecules

IONC-AAPH

IONCs of 40 nm (with 6 nm primary MNPs) were coated with poly(AA-co-AMPS)-PEG for 
water-solubility and loading of AAPH to the carboxyl group of the coating  

Heat

Zhang et al, ACS Nano, 2022
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• ABTS reacts with the free radicals generated by AAPH and forms ABTS+*

• ABTS+* has characteristic absorbance between 400-900 nm
• The absorbance peak is at 734 nm

Heat and free-radical generation
IONC-AAPN was under AMF (H = 9.35 kA/m and f = 320 kHz) for 1 hour 

40 nm IONCs with 6 nm primary MNPs Free radical generation by IONC-AAPH

Zhang et al, ACS Nano, 2022
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***

Free radical generation and cell-killing by 
IONC-AAPH in cell culture 

Flow cytometry analysis of free radicals in MC-38 cells via fluorescence from DCF
H2DCFDA, a cell-permeant compound, was delivered to cells. Upon oxidation by free 
radicals, the non-fluorescent H2DCFDA is converted to highly fluorescent DCF

Fluorescence images of MC-38 cells co-stained for live cells (green) and dead 
cells (red) with different treatments under normoxic and hypoxic conditions

Cells were 
incubated with 
IONC-AAPH for 
1 h for deliver 
followed by 
exposure to 
AMF for 1 h
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Zhang et al, ACS Nano, 2022
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***

Merged

Ctrl AAPH IONC IONC-AAPH IONC-AAPH
+ AMFIONC + AMF

γ-H2AX

Mechanisms of IONC-AAPH mediated cell killing
γ-H2AX foci assay to quantify DNA damage due to IONC-AAPH

F-actin structure changes in MC-38 cells due to IONC-AAPH

****, P < 0.0001
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Zhang et al, ACS Nano, 2022
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Anti-tumor effect of IONC-AAPH in vivo

Day 0 Day 14

6 groups of mice (n = 3)
Intratumoral injection of:
1) Saline
2) AAPH
3) and 5) IONCs
4) and 6) IONC-AAPH
Apply AMF: 5) and 6)

Tumor inoculation Tumor treatment Monitor tumor growth

5 × 105 MC-38 
cells

**
***

46.9°C30.4°C

Before heating After heating

Saline

AAPH

IONC

IONC-AAPH

IONC-AAPH + AMF

IONC + AMF

Tumor growth curves Tumors @ end point Weights of excised tumors 

Mice were 
subjected to 
AMF (H = 9.35 
kA/m and f = 
320 kHz) for 
80 min

Injection volume = 60 
mL per mouse

Zhang et al, ACS Nano, 2022
MC-38 is a colon cancer cell line
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suppresses cancer metastasis
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Days post tumor inoculation

Saline

Anti-PD-1

IONC-AAPH

IONC-AAPH + anti-PD-1

IONC-AAPH + AMF

IONC-AAPH + AMF + anti-PD-1

Inoculation of primary and 

secondary tumors

Day 0 Day 7

Treatment of 

primary tumor

Intratumoral injection of:

i. Saline

iii-vi.  IONC-AAPH

into the primary tumor

Apply AMF: v and vi

IP injection of anti-PD-1: ii, iv, and vi

on Day 8, 11, and 14

Monitor the growth of the 

secondary tumor

5 × 105 MC-38 cells

(primary)

1 × 105

MC-38 cells

(secondary)

6 groups of mice (n = 8):
i. Saline

ii. Anti-PD-1

iii. IONC-AAPH

iv. IONC-AAPH + anti-PD-1

v. IONC-AAPH + AMF

vi. IONC-AAPH + AMF + anti-PD-1

****
***
****
****
***

Days post tumor inoculation

• The percentage of CD3+CD8+ T cells in the secondary tumors increased in the mice injected 
with IONC-AAPH

• The number of antigen-specific interferon-γ producing T cells was significantly higher in the 
mice treated with magneto-immunotherapy, 4.5-fold higher than that of control

Zhang et al, ACS Nano, 2022

Metastasis is the predominant cause of cancer deaths (~80%) due to solid tumors, however 
anticancer drugs are not effective in treating metastatic cancer
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Infiltrating CD8+ T Cells in Secondary Tumors
Saline Anti-PD-1 IONC-AAPH

IONC-AAPH + anti-PD-1IONC-AAPH + AMF
IONC-AAPH + AMF

+ anti-PD-1

CD3+CD4+
53.7

CD3+CD4+
53.2

CD3+CD4+
52.1

CD3+CD4+
48.8

CD3+CD4+
38.7

CD3+CD4+
33.8

CD3+CD8+
26.7

CD3+CD8+
23.8

CD3+CD8+
25.7

CD3+CD8+
24.4

CD3+CD8+
34.9

CD3+CD8+
38.4

CD8
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4

**, P < 0.01

n.s., P = 0.966

• 10 days after treating the primary tumor, cells in the secondary tumor without any 
treatment were harvested for flow cytometry analysis

• The percentage of CD3+CD8+ T cells in the secondary tumors increased by >2-
fold in the mice injected with IONC-AAPH under AMF

Zhang et al, ACS Nano, 2022
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Tumor antigen-specific T cells 
determined by ELISpot assay 

ACS Nano, Nov, 2022
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***

No peptide

TAA peptide

OVA peptide

Saline

Anti-P
D-1

IONC-AAPH

IONC-AAPH + anti-P
D-1

IONC-AAPH + AMF

IONC-AAPH + AMF + anti-P
D-1

• The splenocytes were harvested and stimulated for 24 h with KSPWFTTL, a 
tumor-associated antigen (TAA) peptide. OVA: peptide SINFEKL

• In the mice treated with magneto-immunotherapy, the number of antigen-specific 
interferon-γ producing T cells was 4.5-fold higher than that of control

Enzyme-linked immunospot assay
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Magneto-immunotherapy can suppress 
tumor recurrence 
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• True signals from tumor, digestive 
system and feces, background 
autofluorescence in liver 

• We are now testing the approach for 
treating PDAC (pancreatic ductal 
adenocarcinoma)

Nanocluster distribution 16 days post 
injection  

Zhang et al, ACS Nano, 2022
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IONC-AAPH + AMF

Saline

AAPH

IONC

IONC-AAPH

IONC + AMF

Heart Lung Liver Spleen Kidney

ALT AST

ALP

Safety of IONC-AAPH in cancer therapy
H&E staining of major organs 24 h after treatment, 
showing no tissue damage due to IONC-AAPH 

Evaluation of liver function (ALT, AST, 
& ALP in plasma) and kidney function 
(BUN in plasma) at end point

BUN

Zhang et al, ACS Nano, 2022
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Companies Have Developed Large Systems 
for Applying Alternating Magnetic Fields

https://www.magforce.com/en/home/our_therapy/
MagForce AG, a publicly traded company in Berlin, Germany
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Genome Editing – To Precisely 

Modify A Genome

Non-homologous end joining 
(NHEJ)

• Gene disruption
• Targeted DNA deletion

Homology-directed repair 
(HDR)

Donor DNA template

• Gene editing / correction
• Targeted gene insertion/tagging

Error-prone repair Programmed repair

DNA  Repair Pathways

Engineered nuclease cuts 
DNA at a user-defined site
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Ex Vivo versus In Vivo Therapeutic Genome Editing

Cox et al., Nature Medicine (2015)

• Ex Vivo Genome Editing: 
delivery is easier but target 
cells must be capable of 
surviving outside the body 
and homing back to target 
tissues after transplantation 

• In Vivo Genome Editing: 
With in vivo systemic
delivery, high efficiency and 
tissue specificity is a 
challenge, and local 
injection might not give the 
desired distribution
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Sickle Cell Disease (SCD)

Cause:  A-T mutation in the beta-globin gene. It occurs when 
a person inherits two mutant copies of the beta-globin 
gene, one from each parent

Statistics:
• SCD affects over 20 million people worldwide, 
including ~100,000 in the U.S., resulting in ~120,000 
deaths every year

Treatment: 
• Bone-marrow transplantation is the only cure
• Only ~15% of SCD patients could have a matching donor
• No cure for the majority of patients

Platt et al., N Engl J Med (1994) http://www.cdc.gov/ncbddd/sicklecell/data.html
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• Disrupting BCL11A enhancer in SCD HSPCs1,2

• Correcting HBB sickle mutation in SCD HSPCs
- Using AAV6 donor3,4,5

- Using ssODN donor6,7

• Base editing of SCD HSPCs
- Base editing of BCL11A enhancer8
- Conversion of sickle allele in HBB (HBBS) to Makassar 
β-globin (HBBG )9

Genome Editing Approaches for Curing SCD

1Wu et al, Nat Med. 25:776-783 (2019); 2Frangoul et al, N Engl J Med. 384:252-260 (2021); 
3DeWitt et al, Sci Transl Med. 8:360ra134 (2016); 4Lattanzi et al, Sci Transl Med. 13:eabf2444 
(2021); 5Dever et al, Nature 539:384-389 (2016); Humbert et al, Sci Transl Med. 11:eaaw3768 
(2019); 6Park et al, NAR. 47:7955-7972 (2019); 7Zeng et al, Nat Med 26:535-541 (2020); 
8Newby et al, Nature 595:295-302 (2021) 
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• Isolate hematopoietic stem and progenitor cells (HSPCs) from a SCD patient
• Damage the remaining HSCs in the patient using radiation or chemotherapy 
• Deliver CRISPR/Cas9 and wild-type donor template into HSPCs for gene correction
• Deliver back the gene-edited HSPCs to the patient, produce normal red blood cells to 

replace sickle cells
• A few percent of gene-corrected HSCs can re-generate the who blood system

Gene Correction for Treating SCD
Approach: Use CRISPR/Cas9 to generate a DSB near the mutation site, 
activate homology directed repair, correct the A-T mutation using donor DNA 
template
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HBB Gene-editing to Cure SCD

• We have systematically optimized CRISPR gRNA and 
single-stranded DNA donor template (ssODN) designs 

• Edited SCD CD34+ HSPCs by delivering Cas9/gRNA
ribonucleoprotein (RNP) complex and corrective ssODN
template using electroporation

• Achieved high rates of gene correction (HDR) in HSPCs 
from patients with SCD, and a high level of HbF induction 
by Cas9 cutting only

• Performed a genome-wide unbiased off-target analysis and 
significantly reduced off-target effects 

• Demonstrated a good level of engraftment of gent-edited 
SCD HSPCs in immunodefficient NSG mice

Park et al, NAR, 2019
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Gene Correction of CD34+ HSPCs from 
5 SCD Patients
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SCD HSPCs after gene editing 
were differentiated for 3 
weeks. At day 21, sickled cells 
were counted and the 
percentage of sickled cells 
quantified

The results of HBB gene correction
in CD34+ HSPCs from five SCD 
patients using gRNA/Cas9 RNP and 
SCDct5-wt ssODN. 

Park et al, NAR, 2019
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Gene Correction of SCD CD34+ HSPCs
Induced a High Level of Normal Beta-globin

Mock RNP RNP+ssODN
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HPLC trace showing hemoglobin production 
after 21 days of differentiation of gene-edited 
SCD HSPCs

Delivery of gRNA/Cas9 RNP only 
into SCD HSPCs induced a high 
level of HbF expression

Park et al, NAR, 2019
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Engraftment studies for IND application 

Lattanzi et al, Sci Transl Med. 2021

• Up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing
• 20% gene correction with multilineage engraftment in NSG mice 

2 clinical trials using R-02 gRNA

• GPH101: Gene Correction in 
autologous CD34+ 
hematopoietic stem cells (HbS
to HbA) to treat severe sickle 
cell disease (Matt Porteus and 
Graphite Bio)

• CRISPR_SCD001: 
Transplantation of CRISPR 
modified hematopoietic 
progenitor stem cells in 
patients with severe sickle cell 
disease (Mark Walters)
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Unintended Large Gene Modifications

• On-target DNA DSBs could induce large deletions/insertions and complex 
local rearrangements, which may have pathogenic consequences

• Large deletions/insertions cannot be detected by short-range PCR and 
targeted deep sequencing due to loss of primer binding sites

≥ 200 bp

On-target cut-site

Small INDELs
< 50 bp

≥ 50 bp

Small deletion

Small insertion

Large deletion

Large insertion



Bioengineering

Large Deletions/Insertions at the On-target 
Cut-site Quantified by SMRT-UMI

with ssODN donor 

Park et al, Sci Adv 2022

R-66S gRNA

UMI - Unique Molecular Identifier
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Large Insertions at HBB On-target 
Cut-site due to R-66S RNP

Large Insertions 

Park et al, Sci Adv 2022
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Large Deletions and Insertions Occurred 
with Different gRNAs
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Unintended Large Gene Modifications

• What is the mechanism that causes large deletions with 
high frequencies?

• What are the biological consequences of large deletions 
and insertions?

• How to reduce/eliminate large deletions and insertions? 
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In Vivo Gene Editing for Curing Diseases
• Ex vivo gene editing for curing SCD would not be feasible for patients 

in resource-poor regions, since it requires mobilization and isolation 
of HSCs from the patient for editing, chemo/radiation to damage 
remaining HSCs, and infusion of gene-edited HSCs to the patient. 
The estimated cost is ~$2 million per patient. 

• In vivo gene editing for curing human diseases has significant 
challenges, including the need to achieve high editing rate in vivo, 
and the potential off-target organ/tissue editing. 

• In vivo delivery using viral vectors such as AAV may suffer from 
uncontrollable expression of the editing machinery, causing immune 
response and genotoxicity.

• There is a need to achieve spatial and temporal control of in vivo 
gene editing, to minimize off-target tissue editing and immune 
response.
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Spatial Control of in vivo

Genome Editing via Nanomagnets

Zhu et al., Nat BME, 2019

• During in vivo delivery, baculovirus (BV) 
vector is inactivated by the serum 
complement system 

• When complexed with magnetic 
nanoparticles, BV can be activated locally 
with an applied magnetic field

CBHU6EF1αeGFP sgRNA Cas9pA pA

BV-CRISPR expression vector

Mouse VEGFR2 gene editing in vivo 
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Summary

• We revealed the size-dependence of magnetic 
nanoparticle heating, demonstrating that the classic 
theory is incorrect for large MIONs (>15 nm)

• Magnetic iron oxide nanoclusters with AAPH have the 
potential to serve as a new nanotherapeutic agent to 
suppress cancer metastasis and recurrence

• We have developed gene editing based approaches for 
curing sickle cell disease and the pre-clinical results are 
very promising. Clinical trials are underway. 
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Gordon Research Conference: Advanced Cell and 
Tissue Biomanufacturing

https://www.grc.org/advanced-cell-and-tissue-biomanufacturing-conference/2023/
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