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One Definition of Data Science — The 4+1 Model
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The 4+1 Model of Data Science (CC BY-SA 4.0)

[Adapted from Raf Alvarado]

Value — ensuring societal
benefit

Design - Communication of
the value of data

Systems — the means to
communicate and convey
benefit

Analytics — models and
methods

Practice — where
everything happens — for
today that is early-stage
drug discovery

Bourne PE (2021) Is “bioinformatics” dead? PLoS Biol 19(3): €e3001165.



A Snapshot of In Silico Drug Discovery
Today’s Discussion
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One-drug-one-target Small Molecule Drug Discovery
Process

Kiriiri et al. Future J Pharm Sci. (2020)

Safety
24%

Efficacy
=> 50 O\

Adapted from
http://www.biomech.ulg.ac.be/project/multi-omics/

\Strategic

\ 15%

Omics Druggable Lead compound Pre-clinical Clinical trial . )
data target identification and testing >90% Failure Rate
analysis  identification optimization



http://www.biomech.ulg.ac.be/project/multi-omics/

Fundamental Challenge of Conventional Drug Discovery
in Combating Complex Diseases

Each step in the drug discovery process is optimized for a
. proxy objective but not a clinical endpoint

Disease gene may

Genome-wide off-target animal-human
not be right drug bindings and systems extrapolation
target effects are ignored remains challenging Clinical
_ efficacy
disease . pugrmy binding animal & safety
Y . iid association e \affinity response
T . T
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Adapted from

Power of Artificial Intelligence (Deep Learning) has not
been fully utilized

Bender & Cortes-Ciriano, Drug Discov Today (2021)



Discovery Process: Multi-Scale Modeling Drug Actions |
the Human Body

Pleiotropic systems

effect of drugs transporter

Xie & Bourne (2012) Annu Rev g, S = |

Pharmacol Toxicol,
transcription
b2 Rl  regulator
IR metabolizing
e  enzyme

cell-cell
communication
& variability

Environmental
factors
(e.g., microbiome)

Drugresistance Therapeutic effects Side effects
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Utilize structural genomics
data

Explore evolutionary and
functional linkage (ligand
binding site similarity)
across fold space
Successfully applied to drug
repurposing, side effect
prediction, and
polypharmacology

PreATP-
DHS-like grasp

NAD/FAD-binding SAICAR synthase-like

ALDH-like Protein kinase-likc

Riboflavin synthase
domain-like and
Ferredoxin reductase-like

Anticodon-binding
domain of aaRs and
C-terminal domain

of ProRS P-loop containing

nucleoside
triphosphate

Purivl N- and hydrolases

C-terminal domains
Aspartate
Carbamoyl-
Phospho-

fructokﬁ::ase transferase,

Regulatory-chain
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C-terminal domain Nucleotidylyl
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alpha/beta knot
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SAM methylitransferases P

Radical SAM enzymes Urocanase

FAD/NAD(P)-binding domain

Xie & Bourne, PNAS (2008)

SAM-dependent
methyltransferases NAD(P)-binding
Rossmann-fold



Bioinformatics Methods for Drug Design and Discovery

Early-Stage Drug Discovery Patterns:

Categories Principles

Ligand-based Chemical Similarity; Pharmacophore Similarity
Structure-based Binding site (Pocket) Similarity

Protein-ligand-based Pharmacophore Similarity; Interaction Fingerprint Similarity

Bender, et al; Drug Discov. Today; 2021



Bioinformatics Methods for Protein-ligand interaction
-based Drug Design

IFPs: Protein-Ligand Interaction Fingerprints

Every residue — ligand
interaction encoded into a
7-bit substring

L6TTNID|

Hydrophobic

i |0 |Aromatic(face-to-face)
EnCOdIng IFPS | 0|Aromatic(edge-to-face)

H_bond('igand acceptor) —
[ 0|H-bond(ligand donor)

—
| 0|lonic(protein charge +)
[0]lonic(ligand charge +)

Using pre-defined geometric rules

One 1D string

Given a ligand-binding complex Interactions Rules” representing the
H-bond Distance (Donor-Accepter) < 3.5 A && Tolerance prOteln-Ilgand interactions
Angle (Donor-H-Acceptor €[-1/3, 1/3])
lonic Distance (Anion-Cation) 4.0 A
Aromatic (face to Distance (two aromatic ring centers) < 4.0 A &&
face) Tolerance angle (face to edge) €[-m/6, 1/6])
Aromatic (face to Distance (two aromatic ring centers) < 4.0 A &&
edge) Tolerance angle (face to edge) €[m/6, 511/6])
Hydrophobic Distance (Donor-Accepter) 4.5 A

Deng et al. J. Med. Chem (2004)
Marcou et al. J. Chem. Inf. Model. (2007)



Binding-sites

Structura
|
Proteome

Zhao et al. Drug Discov. Today (2022)
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1AGW_AA:K482 A:P483 e+
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Binding-site-Aligned
Proteome Database

Zhao et al. J. Chem. Inf. Model. (2023)
Zhao et al. ACS Pharmacol. Transl. Sci (2023)

Encoding

FsJPF:

Encoding each complex
into one IFP string

Fs-IFP: Structural Proteome-scale Protein-Ligand
Interaction Fingerprint Method
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Fs-IFP-encoded
Structural Proteome

Covalent Inhibitors,
Allosteric Inhibitors,
Macrocyclic Inhibitors,
Drug (Resistance)
Mechanisms, etc.

12




Fs-IFPs: Application to Allosteric Kinase Inhibitors

Advantage: Allosteric Kinase Inhibitor is attractive due to high, unique selectivity.
Background: 76 Kinase Drugs approved; 4 are allosteric type inhibitors targeting MEK.

Saee

Q.00 00
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o588

~ Fs-IFP
Encoding
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Predicting
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MEK-ligand TN Extracting Top 15 potential
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S I Characteristics o .
as Structura inhibitor design
Dataset

Zhao et al. PLoS One 12 (6), e0179936, 2017 13



Fs-IFPs: Application to Macrocyclic Kinase Inhibitors (MKIs)

Background: 76 Kinase Drugs approved; Challenge: Drug Resistance

Trending: MKIs attracting much attention;

Progress: 2 Approved and 7 in clinical trials (Below)

H,N~ N N
Lorlatinib, ALK/ROS, Pacritinb, JAK2/FLT3, e MERIELLS,
Approved in 2018 Approved in 2022 ase
F Ly L
(0]
B il Br NH
(o)
LN O Y

Z < N

- N\N/ N (0]
Repotrectinib, TRK/ALK/ SB1578, JAK2, Phase I JNJ-26483327, EGFR/RET/
ROS1, Phase I/I1 VEGFR3/Her4/Src, Phase 1

Georg et al. Trends Pharmacol. Sci (2022)
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: N N_ _N
N~ [ N Z —
~ / N/)\N s N</
~__N 0 N

Selitrectinib, TRK, Zotiraciclib, CDK2/JAK2/ TPX-0046, RET/SRC,
FLT3, Phase I/II Phase I/I1

8 out of 9 are designed by
rational drug design strategies
from the acyclic starting points

Zhao et al. ACS Pharmacol. Transl. Sci (2023) 14



How to design MKI?
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Lorlatinib BI-4020

Zhao et al. ACS Pharmacol. Transl. Sci (2023)

Fs-IFPs: Application to Macrocyclic Kinase Inhibitors (MKIs)

HO |

(0)

- jiNj Acyclic Inhibitors
| N/)\N
H

Compound-1

MKIs

Pacritinb
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Fs-IFPs: Apply to Macrocyclic Kinase Inhibitors (MKIs)

Comparing Binding modes of MKIs and their acyclic counterparts

Scaffolds with the

same binding E—)
modes before and

after cyclization

Rigid
Scaffold

MD trajectories analysis using Fs-IFPs
for MKIs and their corresponding acyclic
counterparts

16



Fs-IFPs: Application to Macrocyclic Kinase Inhibitors (MKIls)

. What kind of rigid scaffolds are promising?

(am] ® = i zhengzhster.github.io &

MKI Database: a database of Macrocyclic Kinase Inhibitors

The MKI database is constructed by collecting all the
published MKIs with nanomolar binding affinities from the

scientific literature, describing a panoramic view of the
current progress of MKIs, elucidating the characteristics of
MKiIs and scaffolds, and dissecting the core structures of

Rigid Scaffolds with 3
aromatic rings directly
connected to one another

MKis. It is freely available and will be updated regularly. We
hope it will facilitate the design and development of future
MKls.

Latest update: 2022-12-23

Number of MKis: 641

Number of Covered Kinases: 56

Download csv file: MKI_table.csv

Reference:

MKI database

https://zhengzhster.github.io/MKIs/ Zhao et al. ACS Pharmacol. Transl. Sci (2023)
17
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Discovery Process: A Systems Pharmacology Paradigm

: disease state healthy state
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i

4y S .
b IR TS5 =pid=-
. Proteome--L “=°

Transcriptomics .l

Epigenomics ﬁw&?’/ 4 = i\ ,,,,,,
. Genomics % \ [;tagolo}e ’»%/

Adapted from
http://www.biomech.ulg.ac.be/project/multi-omics/

Chemical perturbed Clinical
Omics profile Biomarkers

Sun et al. (2016) Adv. Genetics 19

Patient Omics profile



A  Multi-level
Integration

Phenotype | Cell viability morphology
v

Network Pathway PPI

Protein | Proteomics Structure

RNA (/ieﬁé expression

DNA /nESNP Sequence

Chemical genomic

,~"scPerturb SCEA PRIDE -
Cross-species Integration

Challenges in Systems Pharmacology:
Multi-omics data integration and knowledge discovery

Noisy, high-dimensional, and sparse

Technical (batch effect) and
biological confounding factors (age,
gender etc.)

Complexity of molecular interplays
across biological layers

Common and unique features across
species
Correlation vs causality



Protein

Hluménated ratio of
& Plasn family
y of protews that h

",5‘. .

Perturbed
expressions 0 #human cells: >106

#existing cell
lines: ~103

Challenges in Systems Pharmacology:
Extensive Dark Chemical and Functional Genomics Space

chemical

#labeled:
~106

#possible small organic
compound: 10°

#possible
molecule:
10180



| Machine Learning/Deep Learning is an Indispensable
Tool

= [0 overcome the extensive dark genome/proteome:
« Itis unethical and infeasible to screen compounds in humans.

« Complexity and high dimensionality of omics data are beyond
human comprehension.

= Understudied biology beyond the reach of experimental
techniques.

m Hence: only a computational approach can overcome this data gap

22



* Filling the Data Gap: Deep Learning Advantages

« Data-driven feature extraction

= Integration of incoherent diverse data (both labeled and unlabeled)
« Explicitly model multi-level organization of biological systems

Machine Learning

& — &y —227% — l

Input Feature extraction Classification Output

Deep Learning

& — sz — [

Input Feature extraction + Classification Output

adapted from
https://levity.ai/blog/difference-machine-learning-deep-learning

23



Filling the Data Gap: Self-Supervised Learning

Embedding W J [ W2 ] [ W’s ] [ w'a ] [ w’s ]
";;::.:a:;[ T r ! “ T

Classification Layer: Fully-connected layer + GELU + Norm

! ! ! ! !
[01][03J[°§J[93J[9§

#labeled:
~106

: ; #possible
R
Transformer encoder
Embedding T T T T T
Cw J [[we ) ([we ] (owsa ] [ ws
I T T T T
English sentence 1 2 3 4 5
gt' | ;’ :I X ”F; I\‘;I’ #labeled:
protein ~102 ,
chemical (NC2=0)C3=C(C=CC(=C3)S(=0)(=0)N4CCN(CC4)C)0CC) #human cells: >10¢
. R
gene expression 9 13 20 2 3 #existing cell

lines: ~103

« Utilizing a large amount of unlabeled data
= Facilitating the exploration of dark chemical and biological space

24



Filling the Data Gap: Transfer Learning & Domain
Translation

Source Task Target Task

@& €9
e

-~ ow 83
()
™ ' %
ATAC-Seq
‘ ‘- h / Grath(é?x;?'I(utlonal
Transfer Learning HEC & P
N

Yang et al. (2021) Nature Comm.

"2
Fully Connected i }{NiA:sieiqr )

Network 7 e
BN B 3
EEwHE -
0 B2/ g
O \OJ

= [ranslating data modality (e.g., source = cell line omics; target = patient image biomarker)
= Removing biological and technological confounding factors across conditions and species
25



Filling the Data Gap: End-to-end Differentiable Biology

AlQuraisi et al., Nat. Methods (2021)
m Protein sequence (unknown structure)->3D protein-ligand binding pose

. .o Final
Final Objective | Immutable
Classic
ML
Final
— Objective
Deep =R ol
Learning =/ \ Pl s
T:/ N
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End-to-end Differentiable Systems Pharmacology for
Precision Drug Discovery

Simultfmeous
[ r \ \
82;3;?1;? PBPK Target Identification Lead Discovery  Clinical test
library (101°) Drug time- Genome-wide Perturbed Perturbed
concentration drug-target omics profiles biomarkers
curve interactions (disease model) (patient)
; t t t
w4 elficacy
Y LYY [ LY £
| = e
N toxicity
DD l ——
— ADDD”
L— / \ =
Patient i ) s ‘
omics profile ! ‘ Hurpan ‘
(disease state) iV omics profile
\Lead optimization Y (healthy state)

- ; : - =
p—r P - = A
&
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What Can Deep Learning Do for Systems
ﬁ Pharmacology-Oriented Drug Discovery ?

disease state healthy state

% " o &
<§ A x E
: oy
s R0 ) L
Y “» 7l o
s
e

Key Questions
e \What are the genome-wide target(s) and off-target(s)?

How does drug modulate cellular state characterized by omics?
How to translate drug activities in a disease model to clinical

numan response”?

28



Predicting Genome-Wide Protein-Chemical Interactions
for Dark Proteins

o PortalCG: An end-to-end
sequence-structure-function neural network

Similarity between OOD-test and OOD-train

A = ¥ e e o
1) Protein pre-training e s
4 Cio class

Histogram of —log(e-value) Histogram of Tanimoto Score

)‘ </ Structure- : - (A)
3 . ] attentlon B Undetectable sequence similarity
k \i . » regulanzed | R X 0.5 Bl Detected sequence similarity 0.25 . L )
3D binding protein ulu CEEESSION 9y Protein similarity oo Chemical similarity
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sequence 2) Chemical pre-training 3) Supervised fine-tuning ROC curve for testing data Precision-Recall curve for testing data
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Zhang et al. IJCAI, 2020; Liu et al. Front Bioinfor, 2021, 3 & rk\_m
< 0. 04 | e,
Cai et al. JCIM, 2021; Cai et al. Bioinformatics, 2022
. . 0.2 0.2
Cai et al. PLoS CB, 2023; Zhang et al. Sci. Rep., 2023 o
: 0.0 0.0
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Cai et al. (2023) PLoS CB 29



PortalCG: Application to Polypharmacology

« Selective dual-DRD1/3 antagonist of Opioid Use Disorder (OUD)

v@"" Dopaminergic System

mmmmmm

/ /JT\\ DIR pharmacophore D3R pharmacophore
D1 D

Linker
A R s ow [k
DIR antigonist D2R antigonist D3R antigonist g ‘ \ +Rj
, o N - } N S N
J / \/ S \/ R

R2 4
O

51% 49%
37% 35%

20% .
11% g9, 8%
(B) I

Two out of three All DRDs

/ l \ PortalCG ' DISAE [ PLD-SIGN B Autodock Vina
Alter Cataleptic Reduce cue-
rewarding side induced .
effect effect relapse Cai et al. (2023) PLoS CB

Zhuang et al. Cell (2021)
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Omics-Driven Phenotype Compound Screening

Cell type-specific A oo i
omics profile of patient s ' ene expression
P P — after treatment

|

=
=
- CEE |
: o e 5|5 %
Chemical e — ,g’ ;’Nf .~ Clinical
structure é-’ -RA-frotemn Protein expression » E &
S after treatment fficacy
Toxicity

&
Dosage éﬁ . ] =
Dose-response

cell viability

Qiu et al. Bioinformatics, 2020; Pham et al. Nat Mach Intell, 2021; He et al. Bioinformatics, 2021,
Pham et al. Patterns, 2022; He et al. Nat Mach Intell, 2022; Wu et al. PLoS CB, 2022;
Wu et al. Cell Rep Methods, 2023
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- Drug combination to induce immunotherapy response

A TET2 Level Comparison
Transform agent Cidal agent

\ j 150
.
o 100
| B
w
{ ==

1
ey |

Resistant cancer cell Sensitive cancer cell
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. control
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O s & 4 &
S & . 3
& & N o & N

<
Treatment

Pham et al. (2022) Patterns

GA 1AL

Omics-Driven Phenotype Compound Screening

K
Treatment

GATAG6 Level Comparison
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Translating Cell Line Screens to Patient Clinical
Responses for Personalized Medicine

Context-aware Deconfounding Autoencoder (CODE-AE)

Therapeutic Toxic
effect effect

Labelled cell-line data

i with known drug (1) Unsupervised pre-training (2) Supervised training using
response cell-line data
Genes
Embedding g
N A T
. § Deconfounding i o
ED5g TDso ¥ = B — ‘ £
g e ‘i‘ / £
\ Confounding Conimon
Gones factors biomarkers
\’ @ Embedding Deconfounding % \ =1
- | N\ + ]
[ 2
; Distribution of reconstructed Distribution of Distribution of aligned ) ) o
? UnlabelledApatlent embeddings disentangled common embeddings (3) Testing on patient
samples without drug : samples
embeddings

response

He et al. (2022) Nature M1
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Translating Cell Line Screens to Patient Clinical

Responses for Personalized Medicine

Normalized z-score
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for AD Drug Repurposing

Reduced Tangle Burden (in red)

TLR/MYDS88/
Asthma drug NF-kB pathway
(PDE inhibitor)
IRAKI - TNF pathway
1% — T e Li | hari
P ‘on - - Lipopolysaccha de
: Synthesis pathway —
\ Herpes simplex
virus infection
Ramified Reactive Amoeboid
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0.I00 0.!50 0.I70 ‘ 1.
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== Pathway —

Drug =—) CPIs

Clinical outcome

Oliveros et al. (2022) Brain
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Put Together: Multi-Scale Modeling of Drug Actions

Improve Learning Memory

Experimental Design

A,Agi\|5|6|7|8|9|10|11|

Ibudilast Treatment

aPAT
Sacrifice
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Will Al be Sufficient?
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ﬁ Limitations of ML.: Interpretability

Scientific Insight

Debug __
Models

= Black Box
Model >

Oviedo et al. Acc. Mater. Res. (2022)



Limitations of ML: Out-of-distribution Generalization

Training

phenotype readout

chemical

Inference

Deployment
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® Out-of-distribution samples

} In-distribution samples

adapted from
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https://medium.com/geekculture/out-of-distribution-detection-in-medical-ai-b638b385c2a3
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Integrating Data-driven and Mechanism-based
Modeling

- Predictive modeling of protein-ligand binding kinetics

: Direction of movement : s .
Causal Learning r :. i
z Y S8 . E f :
7 A \\ i ! T !
. Data-driven . 5,00 _\ it ™
Parameterization Interpretability A \ _ -
\\{\., bl W\ . “ . : !
Scalability Causality e \ \ ) 5
Transportability Mechanism- Sample space Coarsesgritn MD aminny” "
based Simulation All-atom MD Simulation
Biophysics & \ /
Mathematical
X X LN X oo
modeling (X15 X25 +e05 Xp) => (Y15 Y25 5 Ym)

Machine Learning

Chiu et. al (2016) JCIM
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Summary

m Computational approaches to drug discovery have advanced on 3 axes:
1. The scale, complexity and amount of digital data available

2. The type of computation employed:

a) From the application of measurable physical features

b) To the discovery of unknown features
c) To the prediction of outcomes

3. How we think about the problem eto
a) One drug-one target
b) Multiple drugs-multiple targets- populations .
c) Multiple drugs-multiple targets-one human

Large

Populations
Discovery

Model Organisms Process

Organs Multiple Drugs — Multiple Targets — One Person

Cells Multiple Drugs — Multiple Targets

One Drug — Multiple Targets
Omics

One Drug — One Target

lecules Docking MD  Bioinformatics M DL

Simple Complex
Methods
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