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Introduction to our lab SGC

Operations started in June 2004
Aggregate funding >450 MEuro
PPP: Government agencies, EU, charities & leading pharma companies

+200-strong team in Toronto, Frankfurt, Chapel Hill, McGill, KI and UCL
— Promptly placing results, reagents and know-how
in the public domain

— SGC scientists file patents

Open Access Policy:

Main outputs:
High Throughput Structural Biology (>4000 structures deposited)
Renewable Antibodies/Binders
Patient-Cell Derived Assays

Chemical Probes (~190) and Chemogenomics Libraries (1000 targets)
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EVOLVING SCIENCE AND PARTNERS TO ADDRESS PRESSING GLOBAL NEEDS SGC

PHASE | Phase Il Phase IlI

Phase IV Phase V

STRUCTURAL GENOMICS |

TARGET
2035

Bio-active Chemical Tools

Machine Learning

Patient-derived disease assays
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Technology defines the druggable proteome

12SGC

PMID Count

IDG Kinases
top 25% KCGS Coverage
0 100 200 ‘ 300 400 500
Kinases

Size of the druggable families — for example kinases ?
Manning et. al. : 514 kinases

ePK: 478
Eukaryotic like kinases (eLK), differ in substrate binding lobe
Atypical fold (aPK)

Kinhub Web resource: 522 proteins

IDG

dark kinases: 163

Uniprot set: 684

TARGET
2035

Established target families are larger than
initially predicted

Assay technology has not been developed for a
larger fraction of established families

Druggable proteome is rapidly expanding

Druggability of many7if not most protein families
unknown

Binding sites in protein-protein interfaces

Potential of new technologies and modalities
such as molecular glues and/or PROTACs ?



Chemical Tools for poorly explored target families

Kinases

~300 high potency CG cpds
~ 100 chemical probes

Bromodomains

chemical probes for
most subfamilies
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Will the pre-competitive release of chemical probes limit

commerciallization?
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Comprehensive bromodomain inhibitor sets
chemical probe
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How to explore new target areas ¢ @SGC

Assay technology:
Fragment based

AASSASASAANNRNEN

Experimental screening (direct binding assays) (ASMS) &
Experimental + ML/Al: DEL-ML 2 a
In silico ¥

How do we best validate most successful nature
Screenlng technology’) Explore content ¥ About the journal ¥ Publish with us v Subscribe

nature > editorials > article

EDITORIAL | 17 May 2023

Data for AI/ML predictions?
For chemists, the Al revolution has

COETHE g yet to happen

. AT Machine-learning systems in chemistry need accurate and accessible training data.
UNIVERSITAT ,
FRANKFURT AM MAIN Until they getit, they won’t achieve their potential.




In silico benchmarking: CACHE @SGC

- Google’s DeepMind demonstrated in 2021 that Al could predict the structure of most
soluble proteins with accuracy comparable to experimental determination.

- CASP set the stage for this earthquake in the field

- CASP is an international benchmarking competition for protein structure
prediction

- CASP has been running for 30 years

CACHE Is a Prospective Hit Finding Competition

The next frontier is the computational design of drug-like ligands for any given
protein target.

CACHE (Critical Assessment of Computational Hit-finding Experiments) is modeled
after CASP


https://cache-challenge.org/

How are we helping drive progress? Organizing benchmarking

NATURE REVIEWS | CHEMISTRY

CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership
benchmarking initiative to enable the development of computational methods for hit-finding

/ . . s agw . .
CACHE challenge workflow i CACHE is a unique initiative that aims at
I
1. Hit-finding challenges 3. Participants predict and CACHE tests 4. All compound structures, 1 engaging partiCipantS in ‘hit finding’
& : compounds - two cycles per challenge round assay data p‘}aced. in the public 1 . .
omain 1
PDB PDB S CACHE S o e ' challenges which consist
Ligand Ligand compounds chemistry data I of the fo"owing Steps:
SAR SAR :
8 FE% 1. Nomination of targets by CACHE
2. Virtual libraries
- 1. Predictions 3. CACHE tests Data and 2. Curation of a virtual compound library by
Make-on-demand compounds assessment

CACHE

3. Prediction of hits by participants and
experimental testing by CACHE

Crowdsourced All screening data

Bespoke chemistry 4;3:;%71?2?0%33 Assessment of methods

Duration: 18 months

4. All compounds, structures and assay data
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Challenge #1: WDR domain of LRRK2

* LRRK2 is the most commonly mutated gene in familial Parkinson's Disease

* Drug candidates targeting the kinase domain are in preclinical or early-stage clinical trial
CACHE Challenge #1

* Most kinase inhibitors stabilize the closed ' -~

form of LRRK2, associated with the

pathogenic formation of LRRK2 filaments

e The WDR domain in LRRK2 may be
important for recruiting LRRK2 signalling
partners or for binding to tubulin

e Targeting the WDR domain of LRRK2 is an
attractive and underexplored alternative to [ '
kinase inhibitors e

LRRK2 full-length (3.5 Ang) LRRK2 WDR domain (2.7 Ang)
[PDB: 7LHT] [PDB: 6DLO]

Deniston et al. Nature 2020



Challenge #1: WDR domain of LRRK2

Call for applications closed on February 15t 2022

35 Applications

United States - 11
Canada -5
China-4
Germany -3
France - 2
Japan -2
Brazil - 1
CzechRep -1
Denmark - 1
Estonia-1
India - 1
Italy - 1
Sweden - 1
UK-1

Highlights

Top players in the field

Top universities

Mix of commercial and in-house software
Mix of physics-based and Al methods, often
combined

Mix of approaches (fragments,
pharmacophore, docking, generative) often
combined

Areas

Academia - 25
Biotechs — 7
Government — 2
Pharma -1



CACHE Challenge #1

In silico hit ID for less precedented targets

When can Al deliver the drug Challenge #1

discovery hits?

The CACHE hit-finding competition highlights the potential of Al to identify small .
moleculesthattbindt;g)hardlit;-:lrugtagrgefsi::ndltjhzlor:groad a;eadf:rt);lese . 23 teams predICted >2000 Cmpds
computational screening approaches. u Overa” <1% hlt rate

By Asher Mullard = 20-70 uM potency range

LRRK2 full length

= High-throughput docking as input for
generative design, selection from
Enamine RealSpace & filtering for drug-
likeness

= Best hit: LRRK2 SPR K48 uM

R = 3 analogs providing first SAR
o/}\QNH = Hit expansion via Enamine RealSpace for

additional SAR

ZI

! CACHE

nature reviews drug discovery o
https://www.nature.com/articles/d41573-024-00036-0

https://cache-challenge.org/results-cache-challenge-1

1SGC



https://cache-challenge.org/results-cache-challenge-1
https://www.nature.com/articles/d41573-024-00036-0

1SGC

Developing a Chiral ASMS Platform for Proteome-
Wide Hit Discovery and Characterization

- o'
] J K
n -
¢ )
(e =
5 ‘ —

| ' = Xiaoyun Wang Diwen Yang
Levon Halabelian (co-lead) Jianxian Sun (PDF) (PhD)

13



Experimental Screening: ASMS @ SGC 19SGC

500 chemicals each pool

'] s 7 : > Experimental data 4
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Targets were structurally diverse and represented a range of predicted
ligandability

PIASY

=
8
Q
log (fold change)

DDB1
DNMT3A
NSP13 |
RFWD3 |
SKP1
TLE4
HATA |
SPSB2
BIRC3(BIR1)
TIF1a
THEMIS
DCAF7
AASSLKR
AASSSDH

LRRK2(WDR) |
CHIP
DDX1
FBXW?7
MSH6
PIAS1

COPB2(WDR)
DCAF1(WDR)
WDR91
SEC31A
SETDB1
WDR55
YTHDC1
YTHDF2
SKP1_FBX022

Protein transport @ Ubiquitin signaling

Autophagy Amino acid metabolism
© rRNA processing Transcription regulation
© mRNA processing Chromatin regulation

Signal transduction DNA and RNA processing Sheridan et O/., J. Chem. Inf Model. 2010




Many (but not all) predicted binders were confirmed in
orthogonal biophysical assays

bif

Level 1: Co-crystal structure O )
Level 2: Orthogonal validation .Q

Level 3: Chiral selectivity

:

® SPR and chiral selectivity
® Chiral selectivity
® SPR validated

Fold change > 5

Level 4: High fold change
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ASMS screening summary

New Targets with confirmed hits Xray/CryoEM
WDR55 Hit DDB1 Hit HAT1 Hit WDR91 Hit
structure e
DDB1 (2 hits) ~2 uM A AR N e p o ~ -
Vs R )
WDR91 (2 hit) ~1.9 uM Yes 7
HAT1 (1 hit) ~12 UM Yes 1 _) L g /\J\, ;
Co-crystal structure (1.95A) Co-cryital structure (1.85A) Co-crystal structure (2.6A) Co-crystal structure (2.4A)
WDR55 (4 hits) ~10-56 uM Yes
* SPRKp:~12um + SPR Ky:~2uM * SPR Kp:~12pM * SPR Kp:~1.9uM
* DSF confirmed * 19F-NMR confirmed
SEC31A (1 hit) ~30 uM In progress
SKP1 (2 hits) ~20-50 uM No _ ,
To Date: 36 Targets were screened with the 9K library
FBX022-SKP1 (3 hits) ~4-10 uM In progress
. Pending confirmation
Huntingtin-HAP40 (1 hit) ~ 15 uM In progress Targets with

Confirmed Hits
22%

3

Community Targets with hit confirmation in progress
 THEMIS CABIT domain (T. Beyett)
* AASS LKR-GFP (Wyatt Yue target)

* AASS SDH-GFP(Wyatt Yue target) No CT_FIirmed
its

17



The DDB1 hit displays enantiomeric selectivity

100 4.29

890 4.74
_§8CE ' Stock solution
c70
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Verification of enantiomer-specific binding for DDB1

CD spectroscopy
150 -

100 - (S) “F2 < F1 SPR:
K, (S)=13 uM

K, (R)=85 uM

50 -

-100 -

-150 -

The (S) enantiomer selectively binds to DDB1 protein
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AS-MS Screening

GID4: mass spectrometry (ASMS) primary screen (500 000 compounds)

H
N
CIW NH2 R/\H/\ﬂ/
\ Hunig's base
DMSO, 70°C

=




New E3 ligands targeting GID-4

19SGC

« (Gid4 was shown to target the gluconeogenic enzymes Fbpl, Icll, and Mdh2 in yeast

* N-terminal Pro residues (Pro/N-degron; N-terminal Pro followed by a small residue)

@fﬁ? OTLH@

PFI-7
GID4 SPR Kp 0.08uM

" BOB 40 ‘__,_. ............... o
= 1007 856588, 5 1
E oF ¢ < %% Neg. control
g ig-. Kdisp = 41 }IM § 20 KD < 008“M
& 20 g g

e e 5 S ' ,

001t 01 1 10 100 0  25x10% 5x10% 7.5x10% 1x10°

PFI-7 (V) Concentration (M)

Biochemical Assay SPR PFI-7N

@J ﬁ“g“*@\ﬂn%} :

% Pro/N-degron

E2

RMNDS5A-
MAEA

A ,/ A
" RanBP9

y
.
.

\

Nature Chemical Biology, in press



Tracing ligand binding to GID-4

GID4-Tracer

' J GID4-Tracer .
2 M H
P L ot ( }\(N
NanoLuc{\/\s - IS S S oSN
o N0
, \ \.-—-\
+substrate %

Fluorescence

GIDA4-Tracer titration GID4-Tracer competition with PFI-7

] & GID4-N
100 & G4 100- IC50=0.35 + 0.07 uM
1w GID4-C v GID4.C

|IC50=0.28 + 0.05 pM
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GID-4 Interactors

in human Cells
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GID-4 interactors

GO: Molecular function Cellular compartment

RMA binding (G0:0003723)
chromatin binding (G0:0003682)

transcription regulator sctivity (G0:0140110)

Biological process

RMA processing (GO:00083946)
chrematin organization (GO:0008325)

transcription by RMA polymerase || (GO:0008364))

O
o]
e

nucleus (GO:0005834)
nuclear lumen (GC00031881)

chromatin (GC:0000785)

gene 0.074
ratio |
-log10({p.adj)

9%

Nature Chemical Biology, in press



Consequences of GID-4 E3 inhibition 19SGC
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HTP Crystallographic Fragment Screening

Crystallisation screening
3 crystals forms: C222,, P2,2,2,, P422

Crystals tolerate soaking and DMSO.

In-house manual soaking:
>50 fragments =>
more than 40 datasets; 3 ligands found

Suitable: P2,2,2,
(pocket open to solvent channel)

&
E—

Search for Reproducible In-house, XCHEM (and
‘right’ crystal crystallisation manual test > | MAX1V)
form soaking fragment
screening
Defini dition f It Ilisi :
efining condition for crystallising XCHEM — full i1 of 5760 cod ) )
| frozen protein with glycerol. S e pes 950 diffraction data sets
RN H ] >80 crystals/plate using 3 repeating MAXIV - >200 cpds tested 52 with fragments

. : =4 : : K Diamond

;i %o % | conditions with defined range of KCHEM ;50 Ersoment

SiE 8B 0| precipitant. G 1, | { }
> 2 \] P P T RV WA W Ny

Development of
pharmacophore models

sc




DEL + ML hit finding pilot with XChem/ZebiAl/XChem and Google

pubs.acs.org/jmc

M.ach.lne. Learning on DNA-Encoded Libraries: A New Paradigm for Unprecedented targets for DEL+ML screening
Hit Finding
Kevin McCloskey,i Eric A. Sigel,i Steven Kearnes, Ling Xue, Xia Tian, Dennis Moccia, Diana Gikunju,

Sana Bazzaz, Betty Chan, Matthew A. Clark, John W. Cuozzo, Marie-Aude Guié¢, John P. Guilinger, RACK1 WDR12
Christelle Huguet, Christopher D. Hupp, Anthony D. Keefe, Christopher ]J. Mulhern, Ying Zhang, RFWD2

and Patrick Riley*
AAMP

DT .

(7)) = £ -g SE N /
LN o ot ) CDC20
% Protein.QC and DEL ML Models and_ Compound
C-Hista g Affinity Screen Selection P R P F4
N-Biotin
\ ] |\ ] | ] \ J
Y | | ! RBBP4 ATG16L1
SGC X-Chem ZebiAl SGC

WDR41
Google elF2A  SETDB1

to predict commercially
available compounds

DNMT3A



13SGC

DEL-ML Screening

WDRS1

Druggability of the central pocket

WDRS

ATG16L1

B K< 30 pM
U Kp = 30 uM

]
FRPF4

L n

o nvE

WDR12
ShALIT
REBPS
cDCan
CORO1A

LRRK2

DCAFL

RFEWD3
O

[] EIF2a
[ wWDR41

Tligandable

(@) Avisuap ay1j-8nag

[] No binders
,-"‘_ Mot tested

CDC20

AAMP

RFWD2
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Process applied to DCAF1

X-CHEM"® zebi AT
| |
Exp. DATA
)))4 —
>2K DEL 3
. ML DATA
selections

114 billion compounds
screened by DEL

33 compounds selected
through ML from Enamine
REAL library

WDR12

RACK1 DCAF1

RFWD2

CORO1A

CDC20

PRPF4

RBBP4
WDR41

ATG16L1
DNMT3A

LRRK2

SETDB1

Ky:11.5 + 4.2 uM o
50 50—
=) )
277 401 - 279 40- SR ) 0 0
chH ch "
17} 17} .
D0 = ,®
o = 307 o= 301 = N NH,
n O w o / HN - R
£0 €O |8 _ (R)
9 x 201 Q x 20,
" c m) =
o5 o8 f
o m 107 @0y F
0 : Ll_\ 0 ¥ T T T T 1
0 200 400 600 800 1000 0 50 100 150
Compound (uM)

Experimental screening:
Alice Li, Fengling Li,
Masoud Vedadi

4

2.3A X-ray structure

’
J

-~

o

- y / ; S/ ‘A py o i

,/A ‘ ) ;‘\ J’ \ /4' t:q/

© ﬁ SO !’\ %

Y / (7*‘ U / - )/

T # : ;\ \ Serah Kimani, PDF
7 = C ;' <R \ )

a5 O AT

s



DCAF1: DEL+ML hit optimization

Cl
cl 50 \©
504 n o —
- O nw T
= = - (0] Y (@] = 9
» T c 540 PR : T =
£ 8 407 I - 0 o S50 .- < AN 59
=] . © = 301 -’ HN H NH, ° =
= 304 ‘ S n O - » 0
Q = ’ N NH, c O s N £0
238 ’ HN H 204 ¢ (S) S
(8] . A R o ~ ( o =<
9 x 204/ N ( % c / F o5
¢S e T 107g ® 5
m 10 m —
® e b F ~ 0 d T T T T T 1
o 0.0 0'5 1'0 1'5 2'0 2'5 0 50 100 150 200 250 300
o 50 100 150 ' ! ' ' ' ' Compound 26e (nM)
Compound (uM) Compound 3d (uM)
: +
115+ Kp: 490 + 90 nM Kp:38£1.5nM
Kp:11.5 + 4.2 uM oo | Ko
50— ~ " 60—
»n T 0D
0T = O 404 =0
= © 40 ™ o 5 5
[t @ 404
- g 30 = 2 301 o = .
83 38 £ 3
2 S = c O 2 2 x 20-
Q < o w
oS g £ 107 o O
o m 10- = @@
= . 00:.) E 0 T T T T 1
0 2 S . & 800 1000 0 200 400 600 800 1000
0 200 400 600 800 1000 Time (s)
il f"‘ 2
g "
N
< i
N RN \
ACH 7 \‘S‘
« e‘\ i y‘f
= M L A
) ~
! A,
) \ > 3 ‘5‘ \a
P\ V', e < )
p J‘ f\ ) 7
N » 5 > ’
¢ S

2.3A X-ray structure 1.9A X-ray structure

(PDB ID:7UFV) (PDB ID:8F8E)

1.55A X-ray structure

Ontario Institute
for Cancer Research

w PREV  ARTICLE  NEXT
Dlscovery of Nanomolar DCAF1 Small Molecule ngands

Alice Shi Ming Li, Serah Kimani, Brian Wil

2-Alvarez, Ahmed Mamai, Laurent Hoffer,

soud Vedadi*

© Cite this: J. Med. Chem. 2023, 66, 7, 5041-5060
Publication Date: March 22, 2023
https://doi.org/10.1021/acs jmedchem. 202132
Copyright © 2023 The Authors. Published by American
Chemical Society. This publication is licensed under
CC-BY-NC-ND 4.0.

12646 28 6 <) (@) (ms

LEARN ABOUT THESE METRICS



Data Management and Access Strategy @SGC

> 2TB (compressed) to 50 Tb (non-compressed) of protein-ligand interaction data
> Rigorous data management integrated with experimental methods.
> Collaboration between experimentalists and data scientists.

» Cloud-based database designed to accommodate over 300 Tb of data

= Central repository for the Target 2035 screening datasets

= Experimentally validated protein-small molecule binding data
(positive and negative)

: . . 4] »= FAIR principles (Findable, Accessible, Interoperable, Reusable)
Artificial Intelligence-Ready CHEmiCal Knowle.‘ba o = Comprehensive documentation of experimental protocols and
‘ b & findings
e 3 A = Machine learning-ready data datasets
Datasets
Target Name T| Description Selection Date || Partner || Data Dictionary Download Dataset

WDR12 To identify binders to the target 2023-08-28 HitGen Ig Public access coming saon

SETDB1 To identify binders to the target 2023-10-20 X-Chem Public access coming soon

RFWD3 To identify binders to the target 2023-10-20 X-Chem Ig Public access coming soon

DNMT3A To identify binders to the target 2023-10-20 X-Chem @ Public access coming soon

SGC https://aircheck.ai/
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What we have learned so far?
Comparing HitGen and XChem Chemical Space

SETDB FP Dataset - Positive Training Sets ONLY SETDB FP Dataset - Positive & Negative Training Sets

SETDB-1 Hits ONLY XChem vs HitGen

SETDB-1 Hits and Negatives XChem vs HitGen vs ASMS
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Example 1: From DEL-hit to a chemical probe for WDR5 @SGC

18 WDRs, 2 non-WDRs

DNA-encoded library selection

Machine learning

Ligand
binding

LH168 bound to WDR5

0 S
|
2 NAdLbY C@

DEL-Hit Toronto (MR43378) [11]

Ko (SPR): 16
UM

Resolution 1.7 A

SAR v

WDRS5 probe (LH168)

o)
@& CF3

LH168: Nt

DSF: 19.81 K —

Kp (ITC): 13 nM

ICsp(NanoBRET): negative control

intact: < 10 nM (LH222)

OICR 9429 / LH168
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Join Us

Contact:
Dr. Albert A. Antolin
aantolin@idibell.cat

As of October 28,
2024
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Target 2035

A PROBE FOR EVERY PROTEIN

» Who: International federation of biomedical scientists (public
& private sector)

» Aim: Develop and apply new technologies to create by the
year 2035 chemogenomic libraries, chemical probes and/or
biological probes for the entire human proteome.

Interested to share your experience, knowledge and/or results?

- Contact: Target2035@thesgc.org

www.target2035.net
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