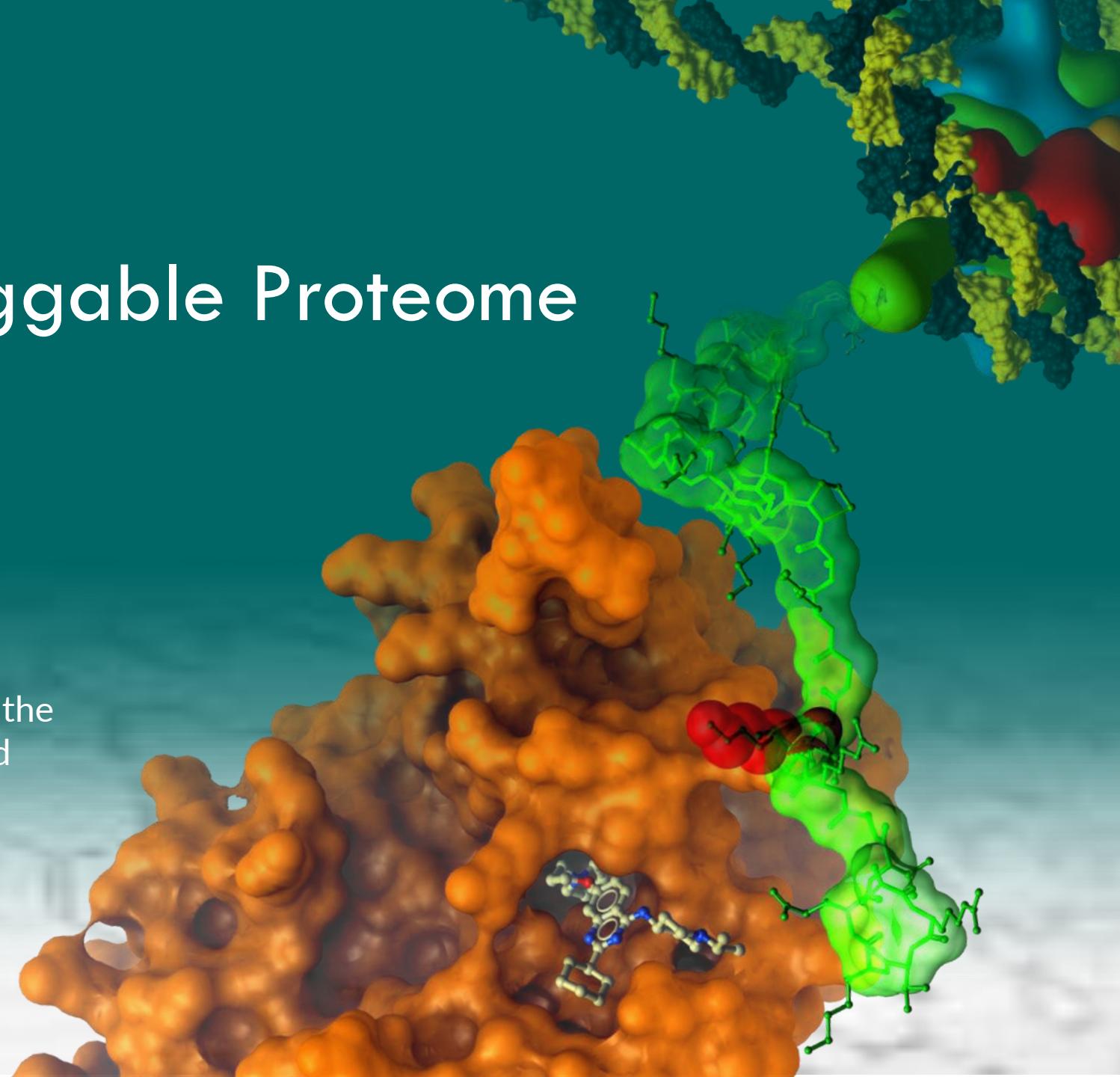


Expanding the Druggable Proteome

Stefan Knapp

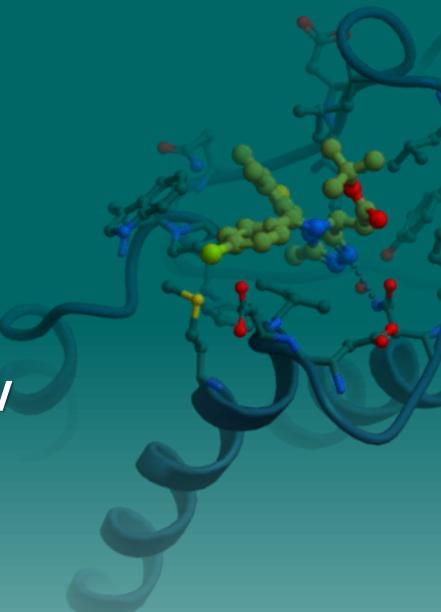
Goethe-University Frankfurt am Main
Institute of Pharmaceutical Chemistry

Advancing Drug Discovery: A Webinar Series of the
National Academies of Sciences, Engineering and
Medicine
November 14, 2024



Introduction to our lab

- Operations started in June 2004
- Aggregate funding >450 MEuro
- PPP: Government agencies, EU, charities & leading pharma companies
- +200-strong team in Toronto, Frankfurt, Chapel Hill, McGill, KI and UCL
- Open Access Policy:
 - Promptly placing results, reagents and know-how in the public domain
 - SGC scientists **never** file patents



Main outputs:

- High Throughput Structural Biology (>4000 structures deposited)
- Renewable Antibodies/Binders
- Patient–Cell Derived Assays
- Chemical Probes (~190) and Chemogenomics Libraries (1000 targets)

GenomeCanada

Ontario

BILL & MELINDA
GATES foundation

THE ESHELMAN FOUNDATION
WILMINGTON • NORTH CAROLINA

Boehringer
Ingelheim

Genentech

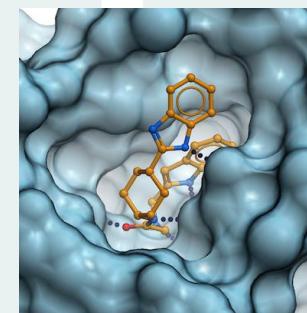
Janssen

Bristol Myers Squibb™

MERCK

STRUCTURAL GENOMICS

Human Protein Families
Human Parasite Proteins



CHEMICAL GENOMICS

Bio-active Chemical Tools

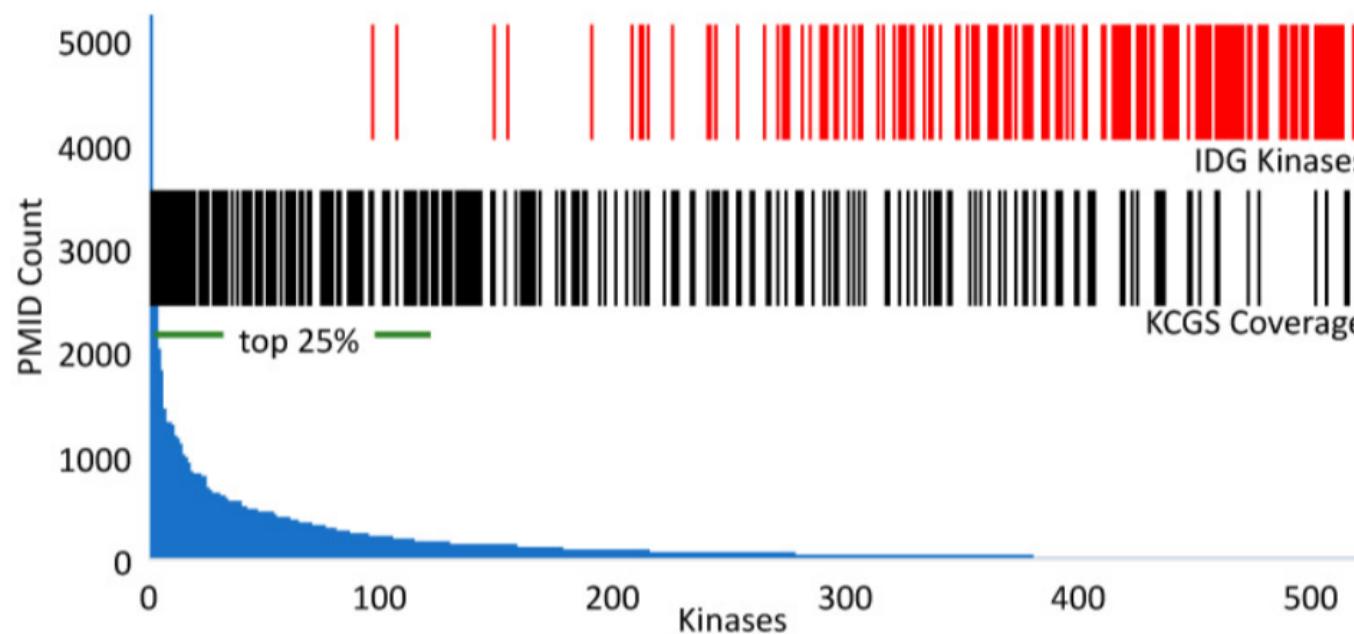
TARGET
2035

DATA DRIVEN DD
Machine Learning

Patient-derived disease assays

SCIENTIFIC Focus

INDUSTRY PARTNERS



TARGET
2035

- Established target families are larger than initially predicted
- Assay technology has not been developed for a larger fraction of established families

Size of the druggable families – for example kinases ?

- Manning et. al. : 514 kinases
 - ePK: 478
 - Eukaryotic like kinases (eLK), differ in substrate binding lobe
 - Atypical fold (aPK)
- Kinhub Web resource: 522 proteins
- IDG dark kinases: 163
- Uniprot set: 684

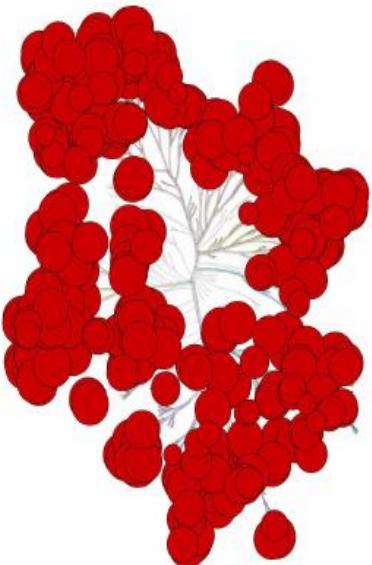
Druggable proteome is rapidly expanding

- Druggability of many if not most protein families unknown
- Binding sites in protein-protein interfaces
- Potential of new technologies and modalities such as molecular glues and/or PROTACs ?

Chemical Tools for poorly explored target families

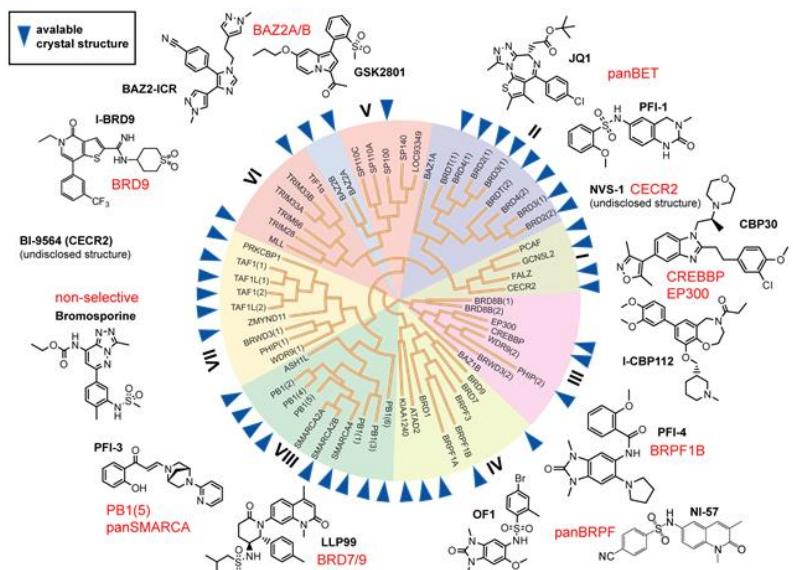
Kinases

~300 high potency CG cpds
~ 100 chemical probes



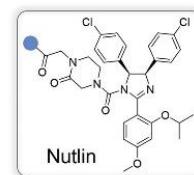
Bromodomains

chemical probes for
most subfamilies



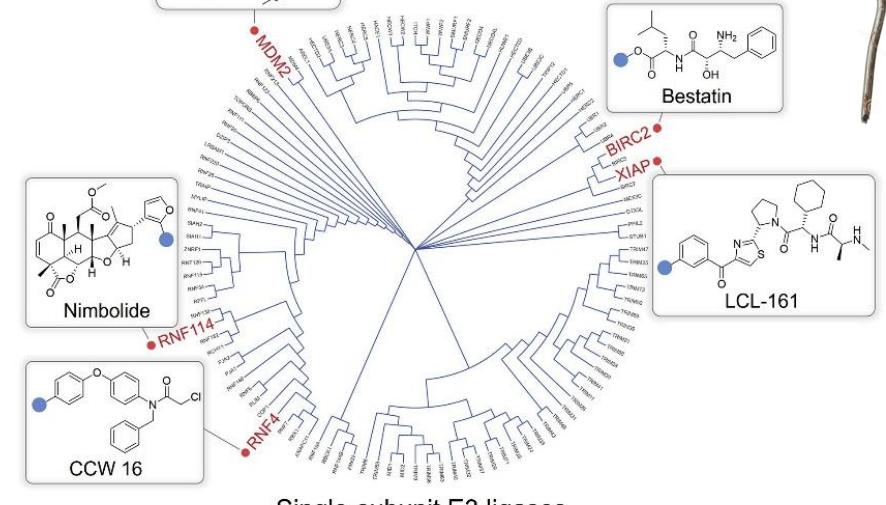
>90% of
PROTACs use
CRBN or VHL
ligands

E3 Ligases



Nutlin

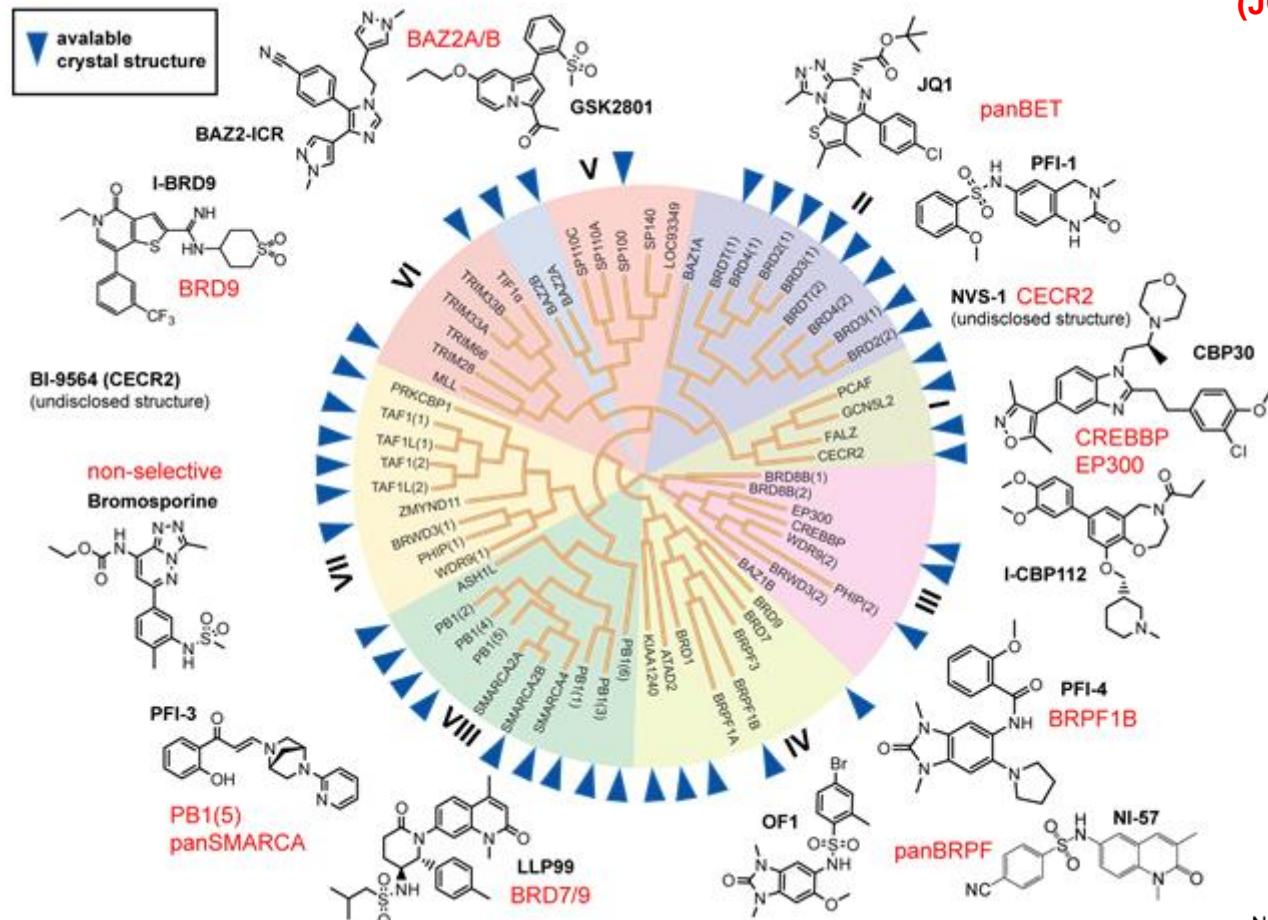
Bestatin



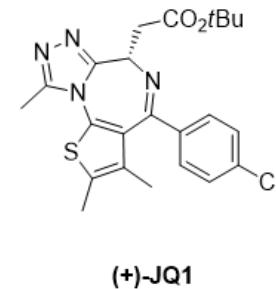
Single-subunit E3 ligases

Will the pre-competitive release of chemical probes limit commercialization?

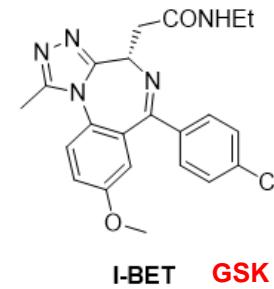
Comprehensive bromodomain inhibitor sets



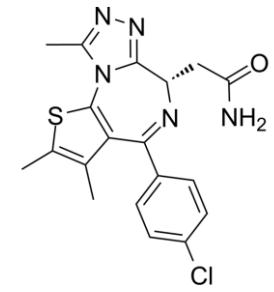
Pan BET BRD chemical probe (JQ1)



(+)-JQ1

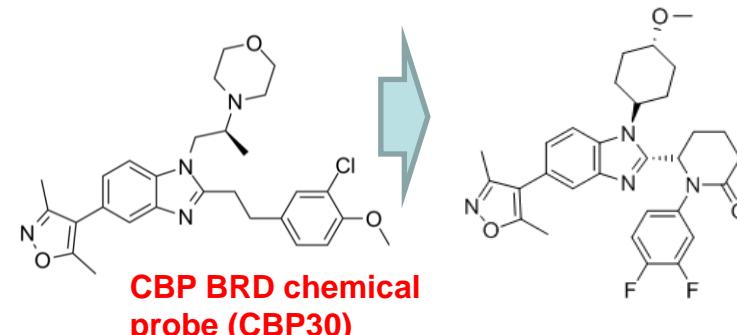


I-BET GS1



Constellation

44 clinical studies



CBP BRD chemical probe (CBP30)

2 clinical studies on
CBP inhibitors in
oncology (Inobrodib)

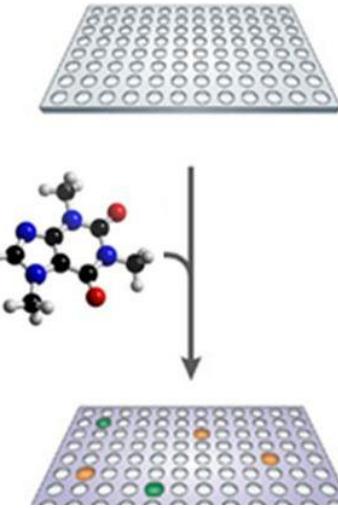
Assay technology:

Fragment based

Experimental screening (direct binding assays) (ASMS)

Experimental + ML/AI: DEL-ML

In silico



How do we best validate most successful screening technology?

Data for AI/ML predictions?

nature

Explore content ▾ About the journal ▾ Publish with us ▾ Subscribe

[nature](#) > [editorials](#) > [article](#)

EDITORIAL | 17 May 2023

For chemists, the AI revolution has yet to happen

Machine-learning systems in chemistry need accurate and accessible training data. Until they get it, they won't achieve their potential.

- Google's DeepMind demonstrated in 2021 that AI could predict the structure of most soluble proteins with accuracy comparable to experimental determination.
- CASP set the stage for this earthquake in the field
 - CASP is an international benchmarking competition for protein structure prediction
 - CASP has been running for 30 years

CACHE Is a Prospective Hit Finding Competition

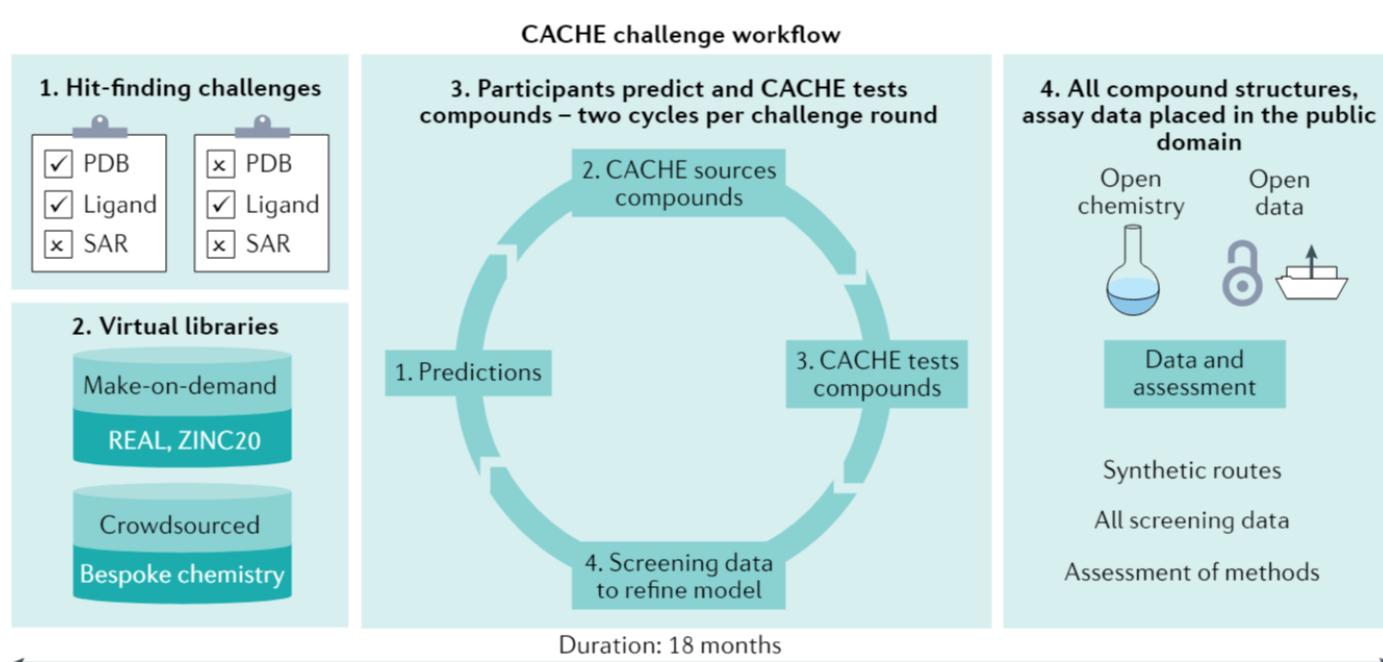
The next frontier is the computational design of drug-like ligands for any given protein target.

[CACHE](#) (Critical Assessment of Computational Hit-finding Experiments) is modeled after CASP

How are we helping drive progress? Organizing benchmarking

NATURE REVIEWS | CHEMISTRY

CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding

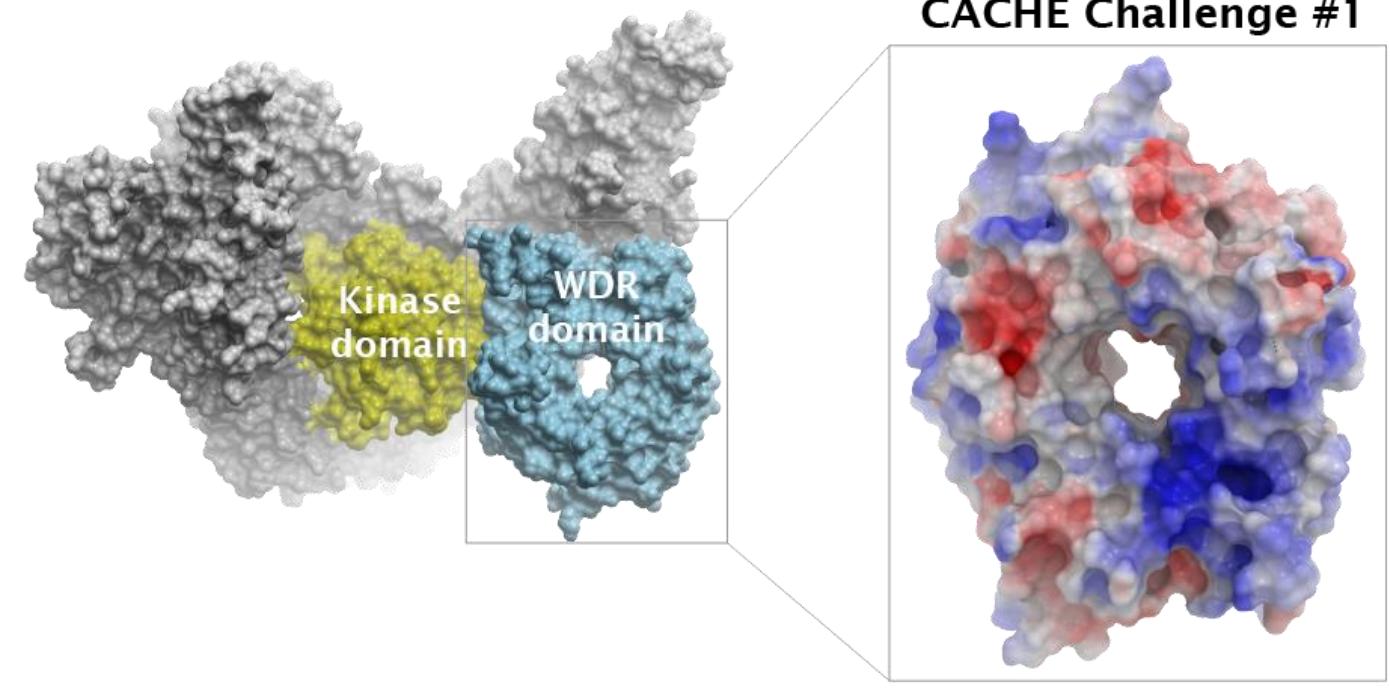


CACHE is a unique initiative that aims at engaging participants in 'hit finding' challenges which consist of the following steps:

1. Nomination of targets by CACHE
2. Curation of a virtual compound library by CACHE
3. Prediction of hits by participants and experimental testing by CACHE
4. All compounds, structures and assay data publicly available

Challenge #1: WDR domain of LRRK2

- LRRK2 is the most commonly mutated gene in familial Parkinson's Disease
- Drug candidates targeting the kinase domain are in preclinical or early-stage clinical trial
- Most kinase inhibitors stabilize the closed form of LRRK2, associated with the pathogenic formation of LRRK2 filaments
- The WDR domain in LRRK2 may be important for recruiting LRRK2 signalling partners or for binding to tubulin
- Targeting the WDR domain of LRRK2 is an attractive and underexplored alternative to kinase inhibitors



LRRK2 full-length (3.5 Ang)
[PDB: 7LHT]

LRRK2 WDR domain (2.7 Ang)
[PDB: 6DLO]

Challenge #1: WDR domain of LRRK2

Call for applications closed on February 1st 2022

35 Applications

United States - 11

Canada - 5

China - 4

Germany - 3

France - 2

Japan - 2

Brazil - 1

Czech Rep - 1

Denmark - 1

Estonia - 1

India - 1

Italy - 1

Sweden - 1

UK - 1

Highlights

- Top players in the field
- Top universities
- Mix of commercial and in-house software
- Mix of physics-based and AI methods, often combined
- Mix of approaches (fragments, pharmacophore, docking, generative) often combined

Areas

- Academia - 25
- Biotechs – 7
- Government – 2
- Pharma -1

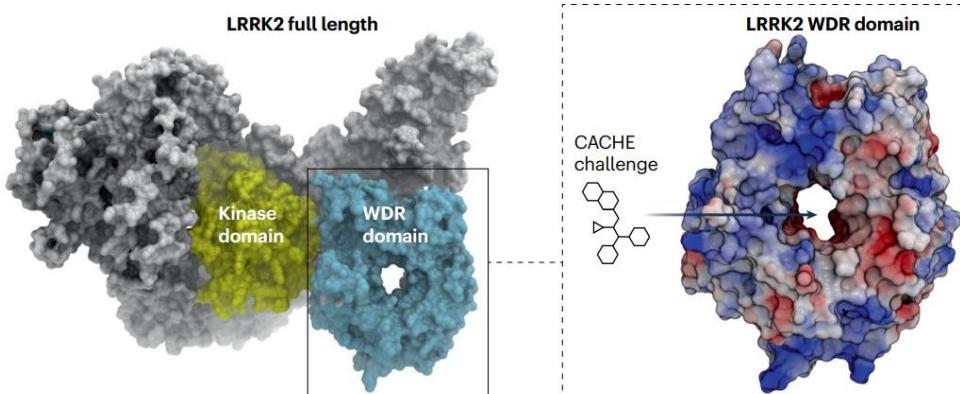
CACHE Challenge #1

In silico hit ID for less precedented targets

When can AI deliver the drug discovery hits?

The CACHE hit-finding competition highlights the potential of AI to identify small molecules that bind to hard-to-drug targets – and the long road ahead for these computational screening approaches.

By [Asher Mullard](#)

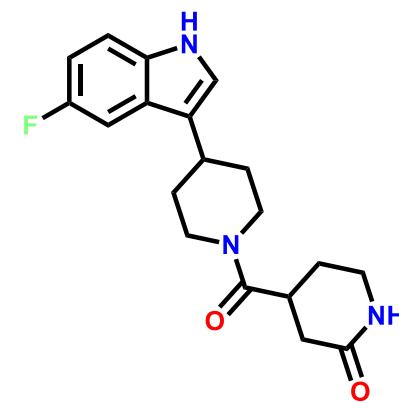


nature reviews drug discovery

<https://www.nature.com/articles/d41573-024-00036-0>

Challenge #1

- 23 teams predicted >2000 cmpds
- Overall <1% hit rate
- 20-70 μ M potency range



- High-throughput docking as input for generative design, selection from Enamine RealSpace & filtering for drug-likeness
- Best hit: LRRK2 SPR K_D 48 μ M
- 3 analogs providing first SAR
- Hit expansion via Enamine RealSpace for additional SAR

<https://cache-challenge.org/results-cache-challenge-1>

Developing a Chiral ASMS Platform for Proteome-Wide Hit Discovery and Characterization

Levon Halabelian (co-lead)

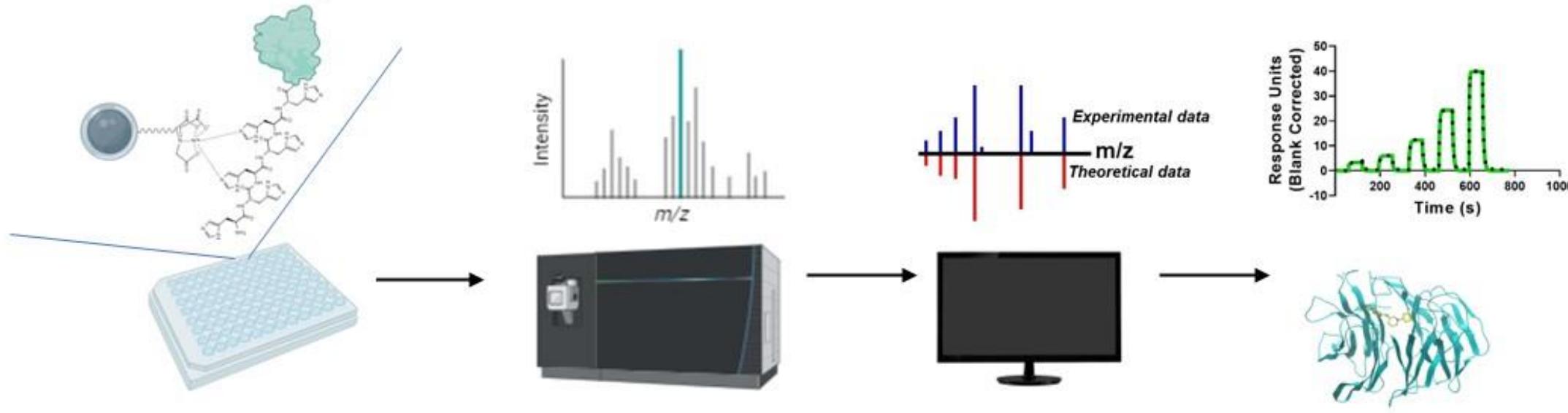
Jianxian Sun

**Xiaoyun Wang
(PDF)**

**Diwen Yang
(PhD)**

Experimental Screening: ASMS @ SGC

500 chemicals each pool



Affinity purifications
(2 days)

LC-MS analysis
(3 days)

Chemoinformatics
(2 days)

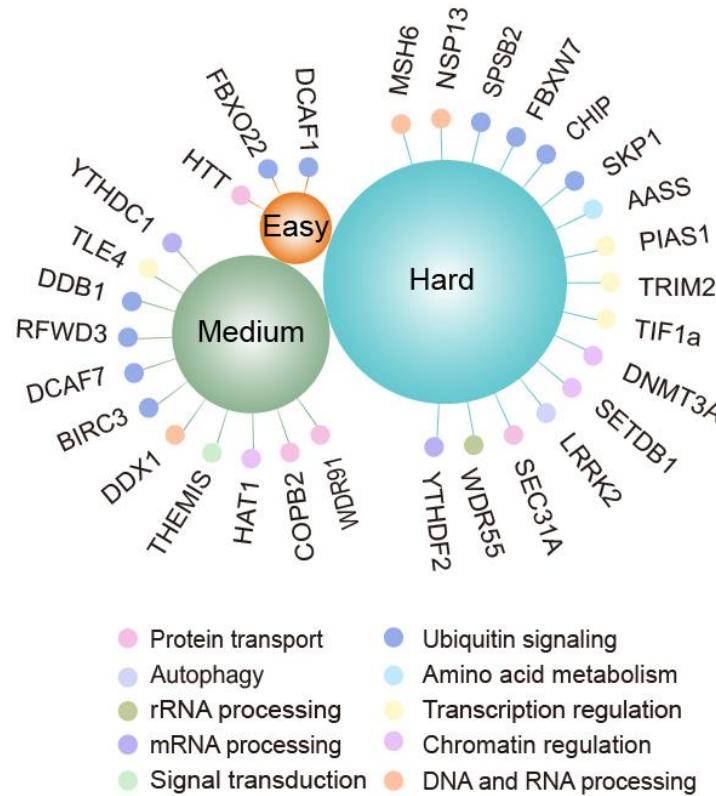
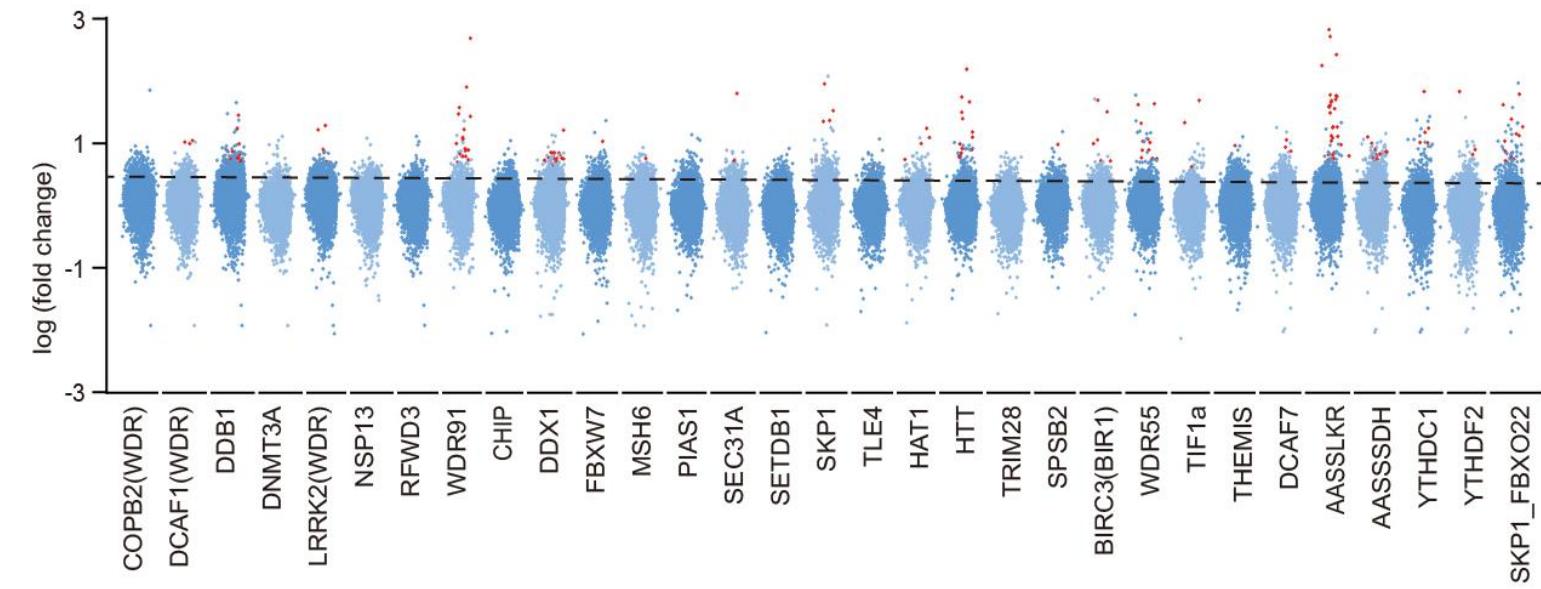
Orthogonal
validations

460K library: Enamine Real
HLL-460 Library

Library v2.0:
12K picked by SGC partners

Throughput: ~400 proteins
against 15K chemicals per year

Targets were structurally diverse and represented a range of predicted ligandability

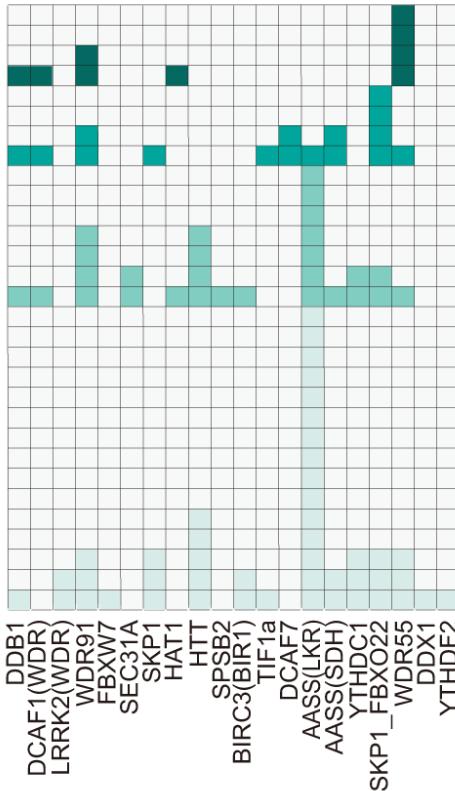


Sheridan et al., J. Chem. Inf. Model. 2010

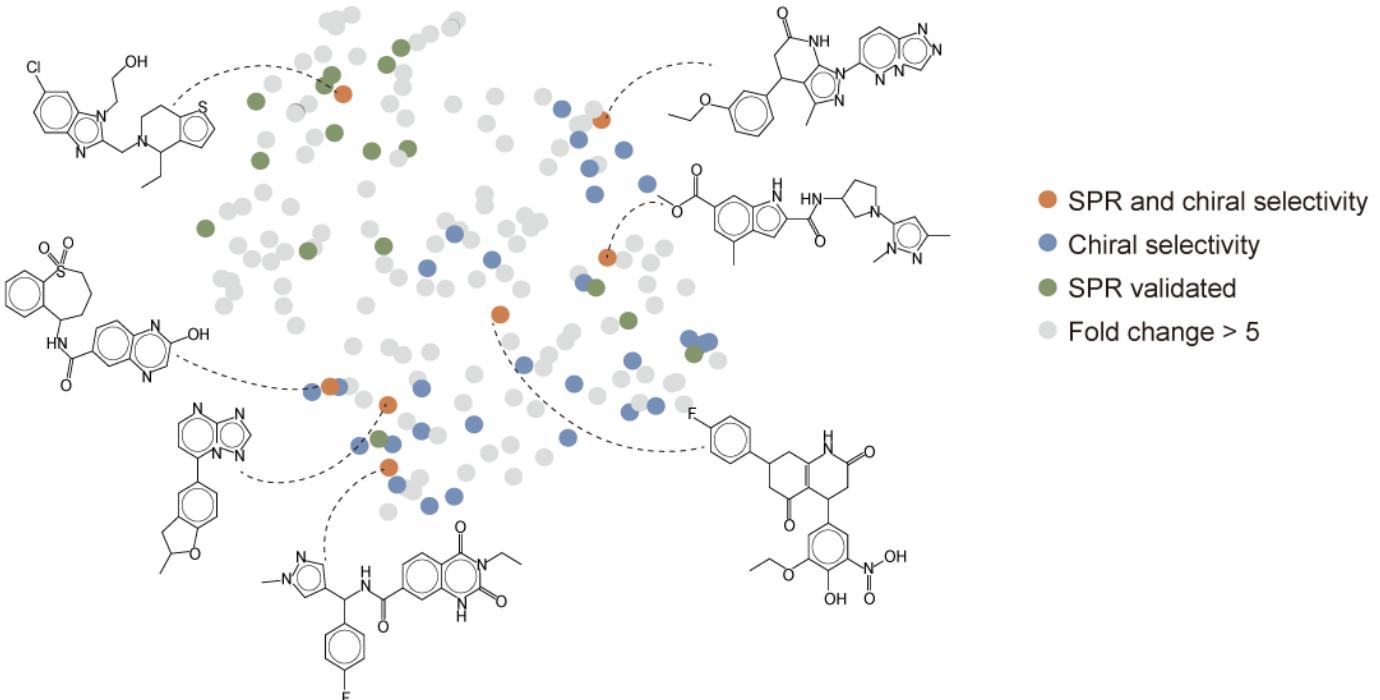
-31 targets including 3 'easy' ($DLID > 1$), 11 'medium' ($0.5 < DLID < 1$), and 16 'hard' ($DLID < 0.5$) targets

-81 ASMS hits (>10) were detected for 19 targets: 3 'easy' (100%), 7 'medium' (64%), 9 'hard' targets (56%)

Many (but not all) predicted binders were confirmed in orthogonal biophysical assays



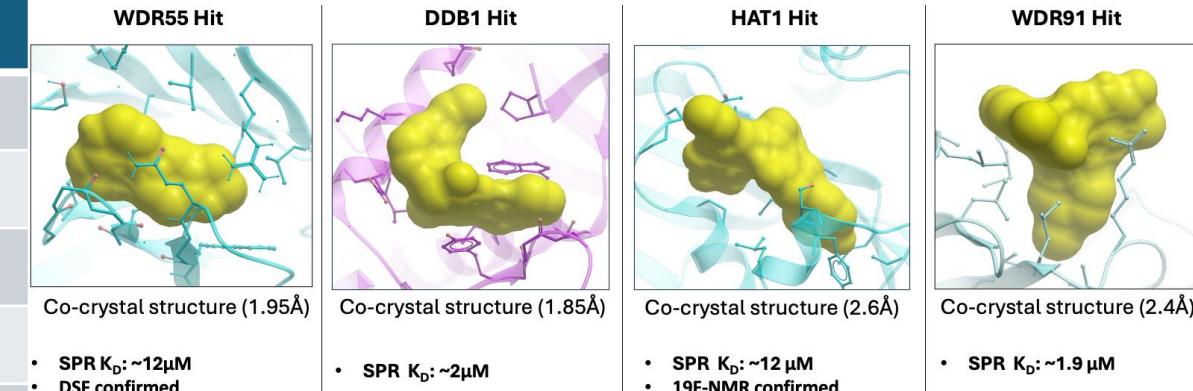
Level 1: Co-crystal structure
Level 2: Orthogonal validation
Level 3: Chiral selectivity
Level 4: High fold change



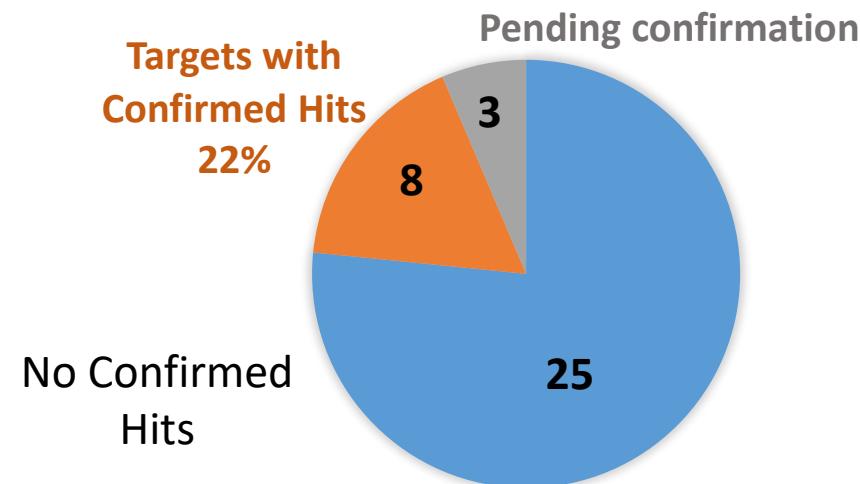
- 25 hits were validated for 10 targets (10/31, 32%) by SPR; and 9 hits were validated by co-crystal structures
- 10 enantioselective hits were validated
- First-in-class ligands were discovered for 2 targets including WDR55 and HAT1

ASMS screening summary

New Targets with confirmed hits	SPR K_D (μM)	Xray/CryoEM structure
DDB1 (2 hits)	$\sim 2 \mu\text{M}$	Yes
WDR91 (2 hit)	$\sim 1.9 \mu\text{M}$	Yes
HAT1 (1 hit)	$\sim 12 \mu\text{M}$	Yes
WDR55 (4 hits)	$\sim 10\text{-}56 \mu\text{M}$	Yes
SEC31A (1 hit)	$\sim 30 \mu\text{M}$	In progress
SKP1 (2 hits)	$\sim 20\text{-}50 \mu\text{M}$	No
FBXO22-SKP1 (3 hits)	$\sim 4\text{-}10 \mu\text{M}$	In progress
Huntingtin-HAP40 (1 hit)	$\sim 15 \mu\text{M}$	In progress



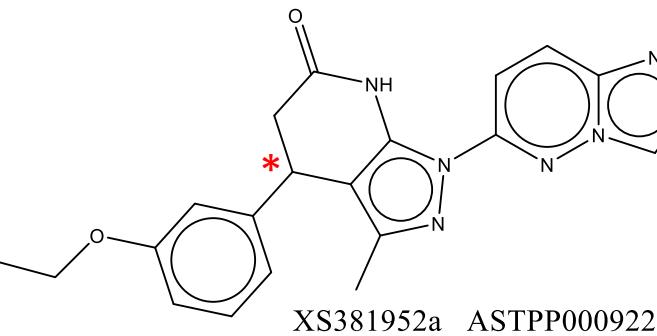
To Date: 36 Targets were screened with the 9K library



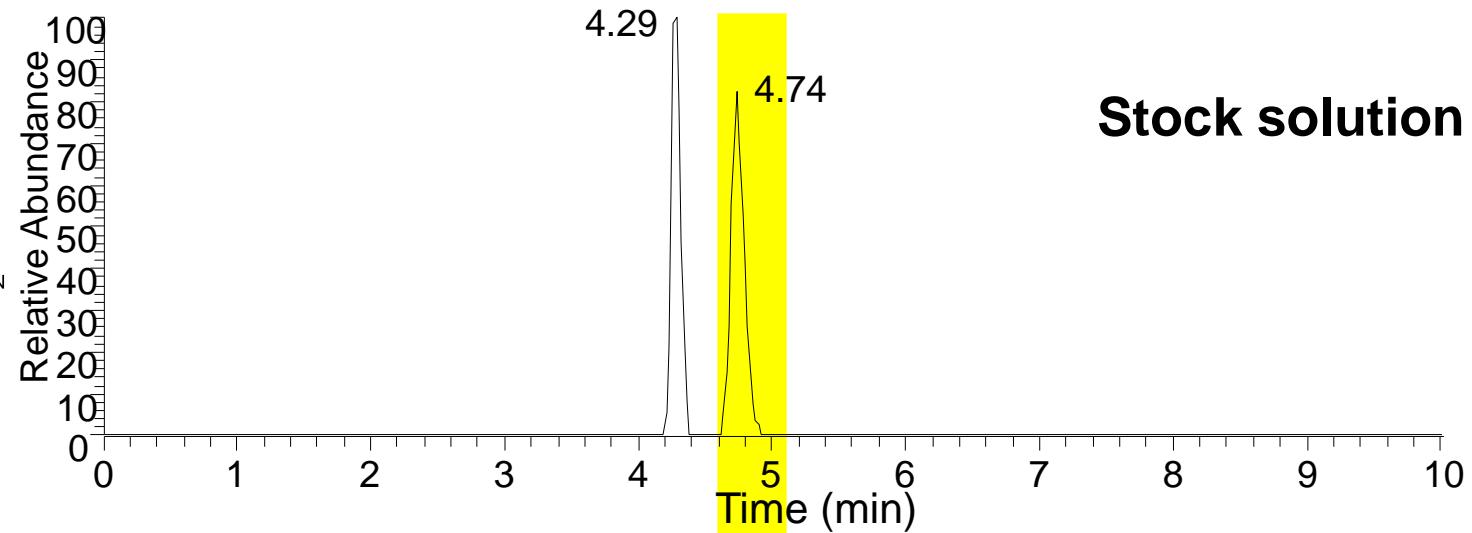
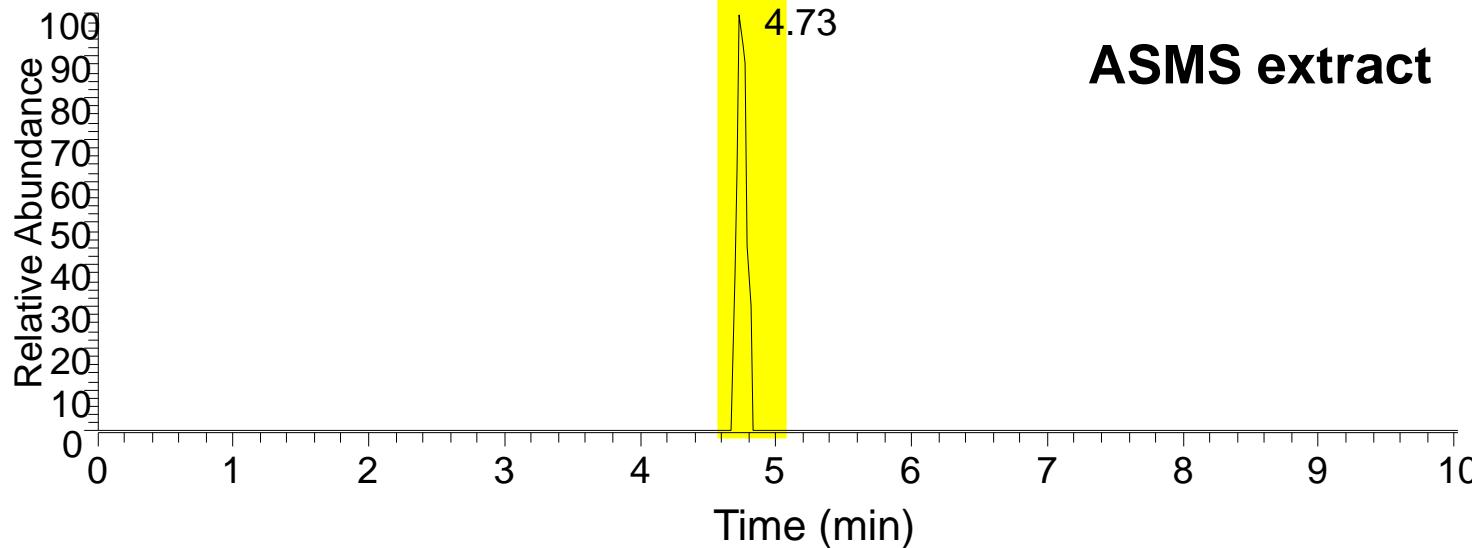
Community Targets with hit confirmation in progress

- THEMIS CABIT domain (T. Beyett)
- AASS LKR-GFP (Wyatt Yue target)
- AASS SDH-GFP (Wyatt Yue target)

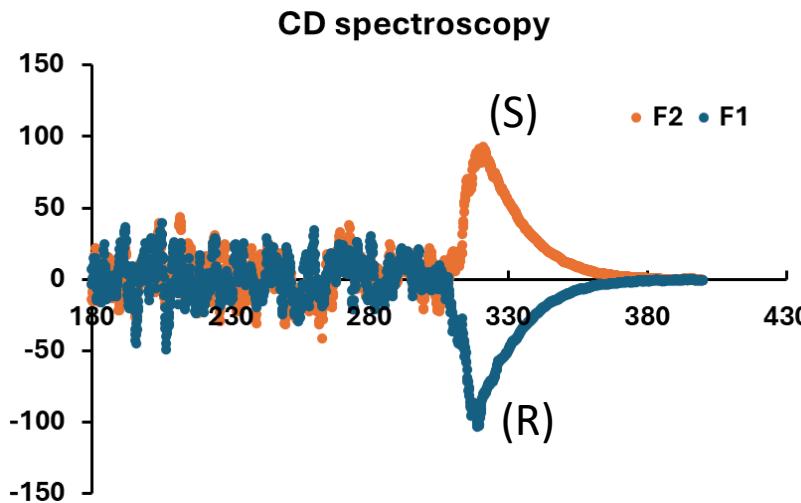
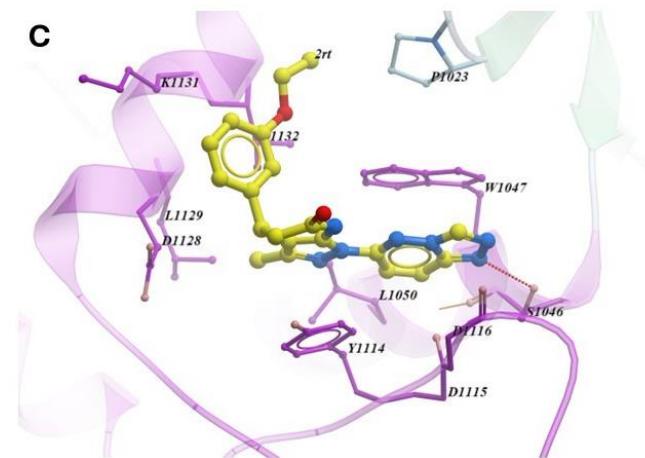
The DDB1 hit displays enantiomeric selectivity



The 2nd enantiomer was selectively enriched

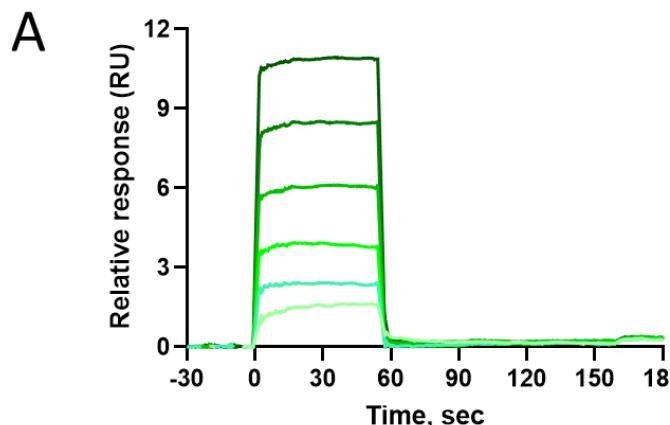
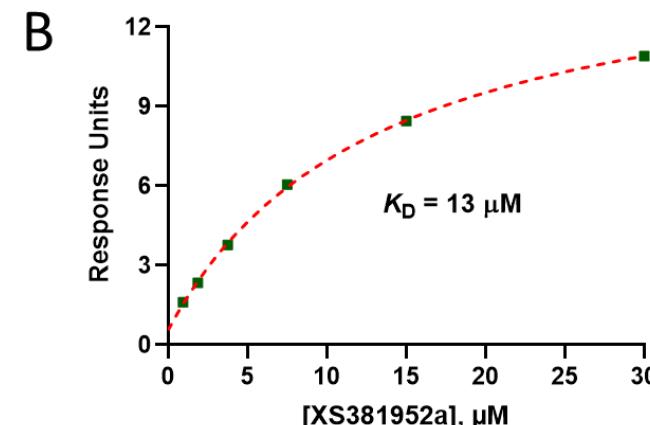


Verification of enantiomer-specific binding for DDB1

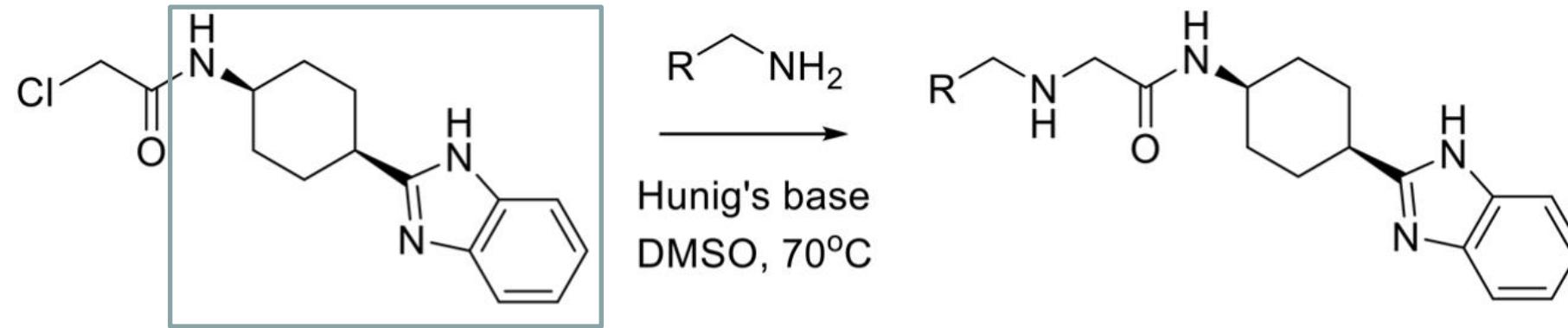
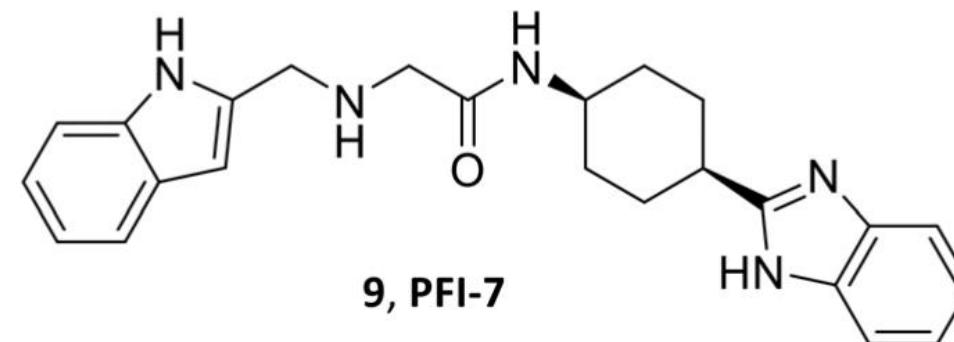


SPR:
 $K_D (S) = 13 \mu M$
 $K_D (R) = 85 \mu M$

The (S) enantiomer selectively binds to DDB1 protein

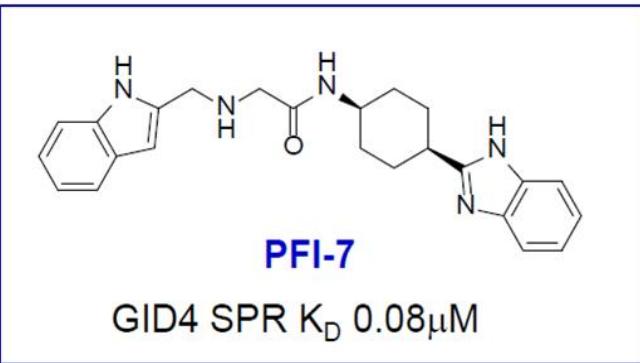
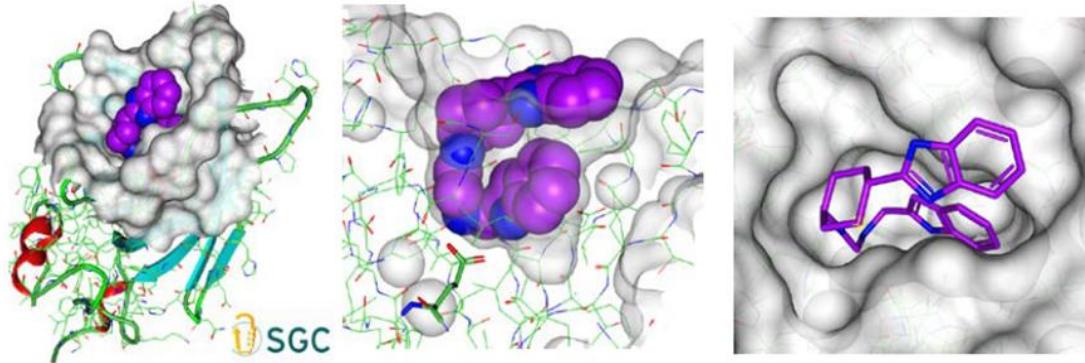
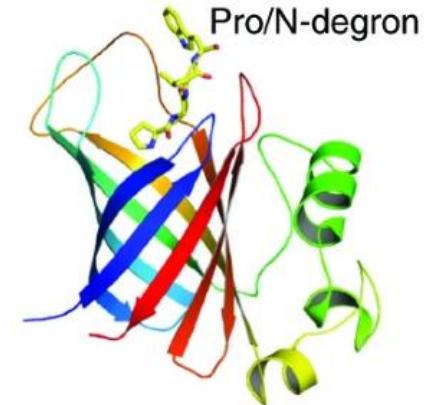
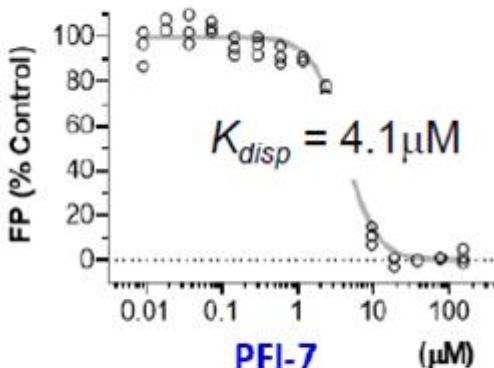
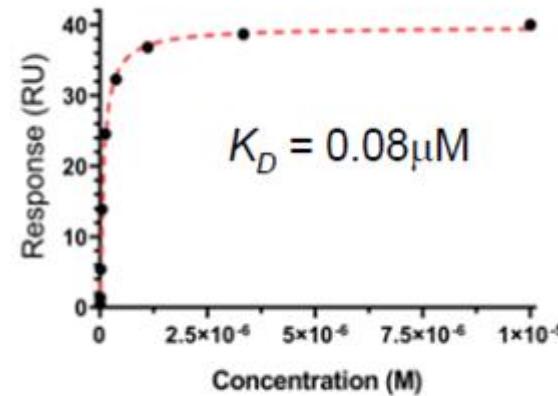


GID4: mass spectrometry (ASMS) primary screen (500 000 compounds)



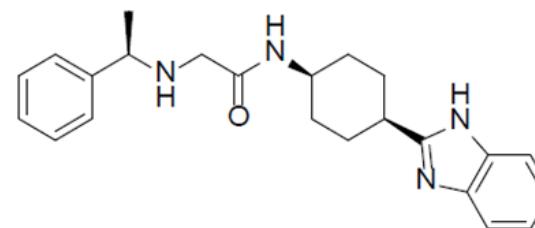
New E3 ligands targeting GID-4

- Gid4 was shown to target the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 in yeast
- N-terminal Pro residues (Pro/N-degron; N-terminal Pro followed by a small residue)

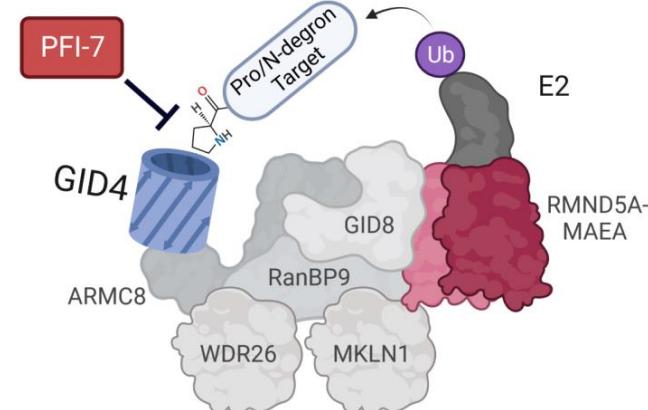


Biochemical Assay

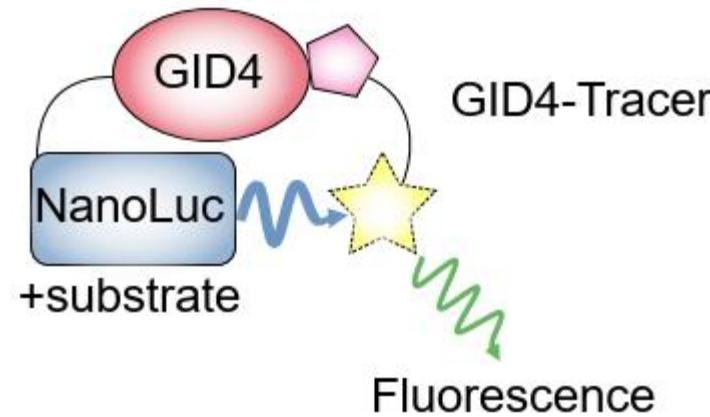
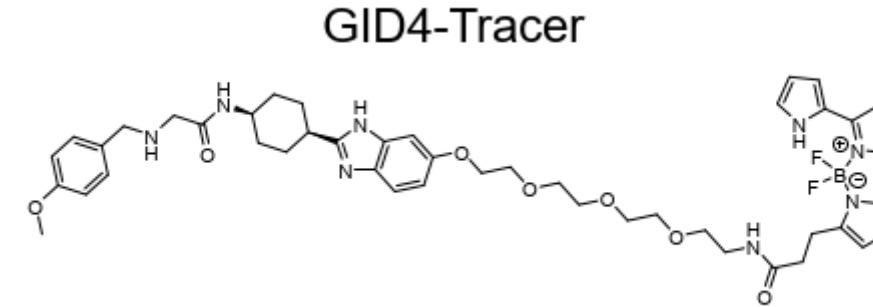
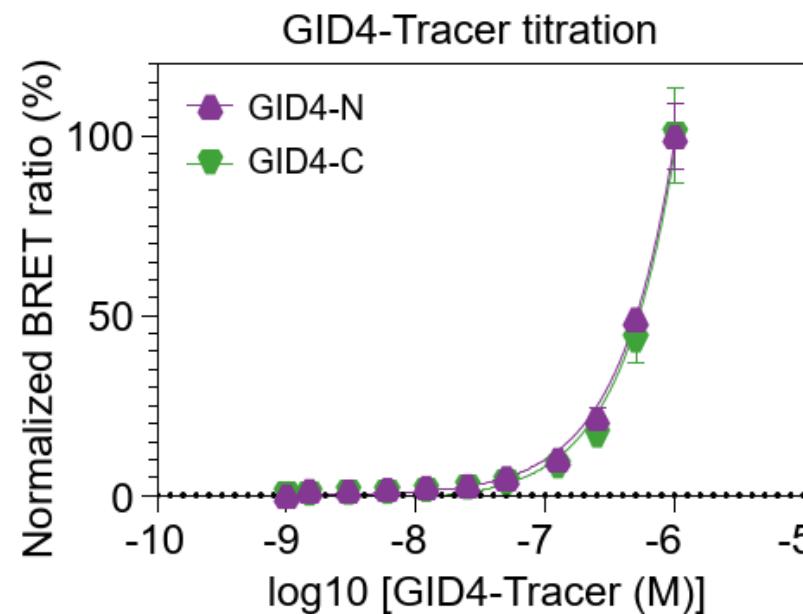
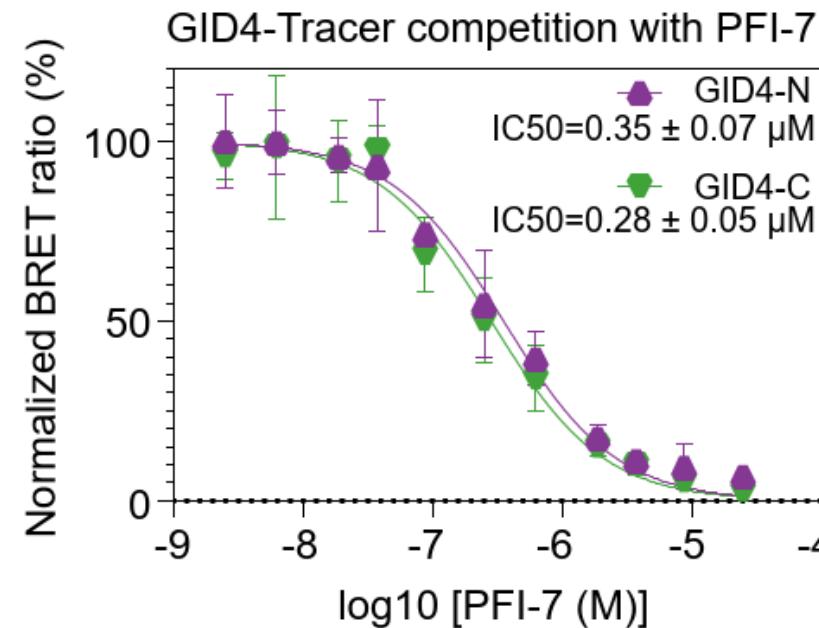
SPR



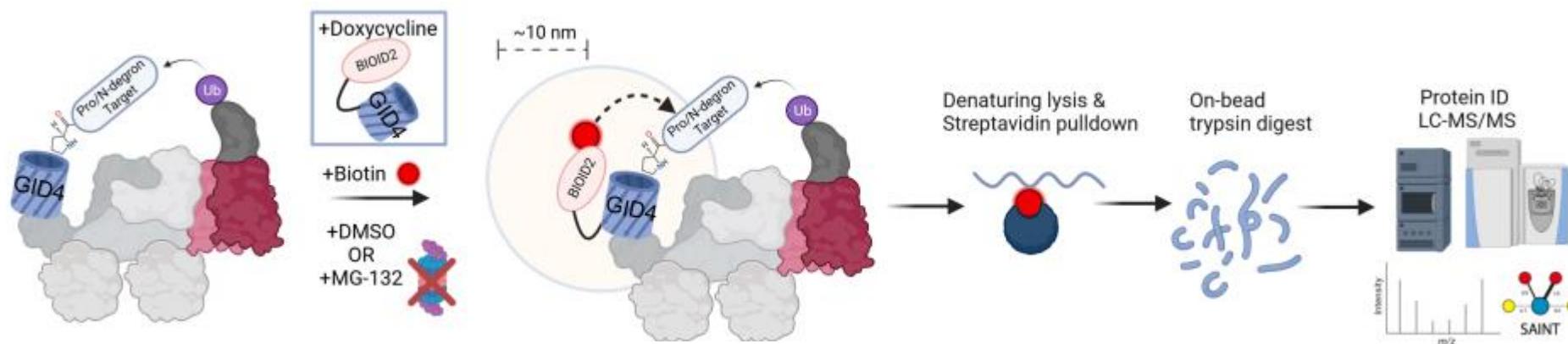
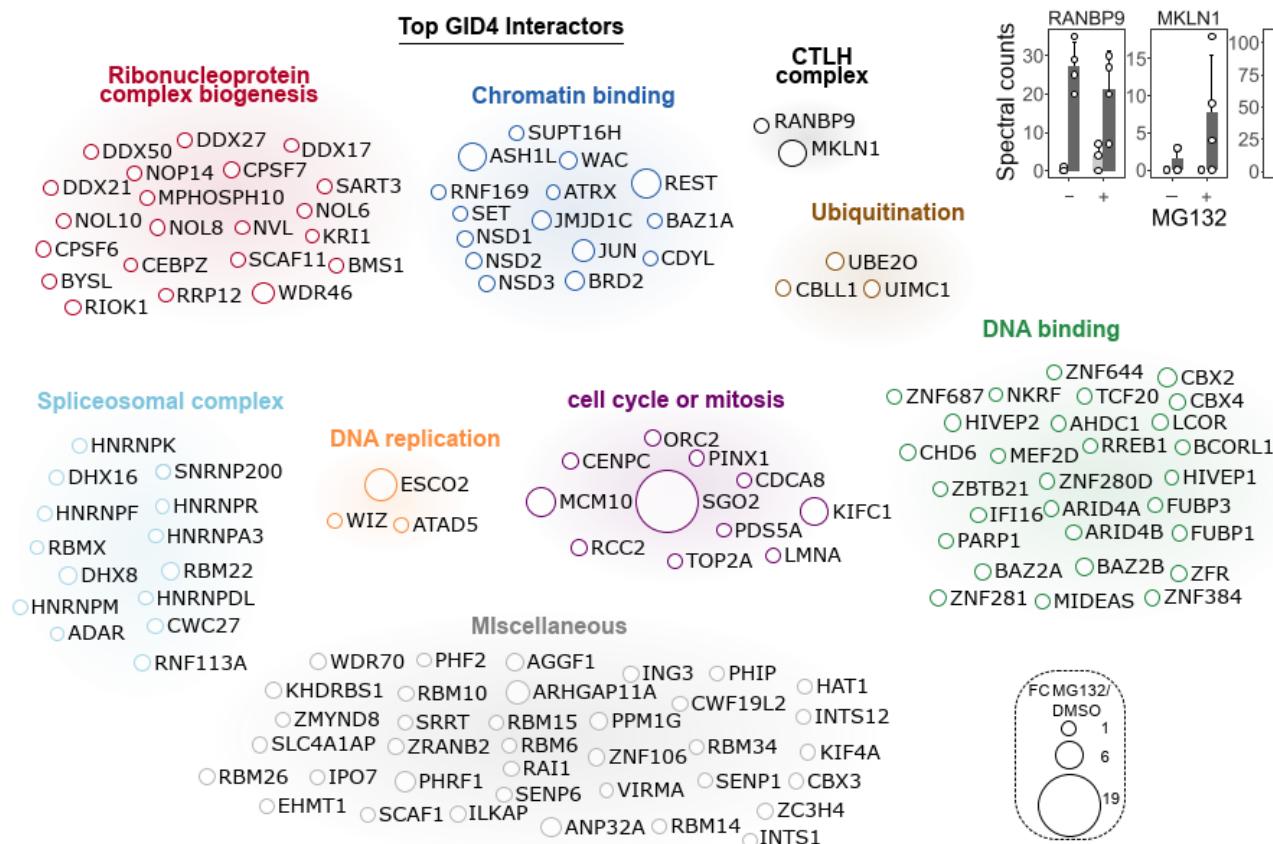
Neg. control



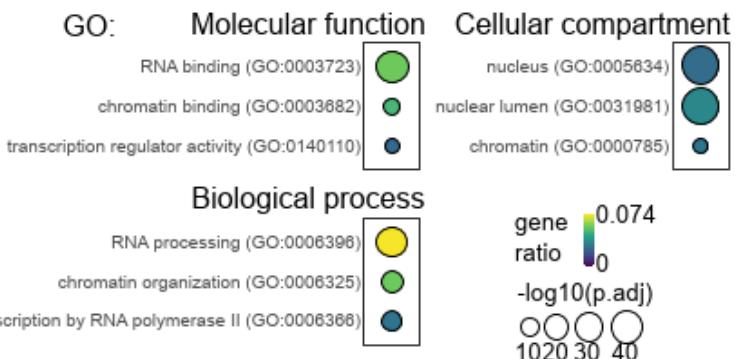
Tracing ligand binding to GID-4



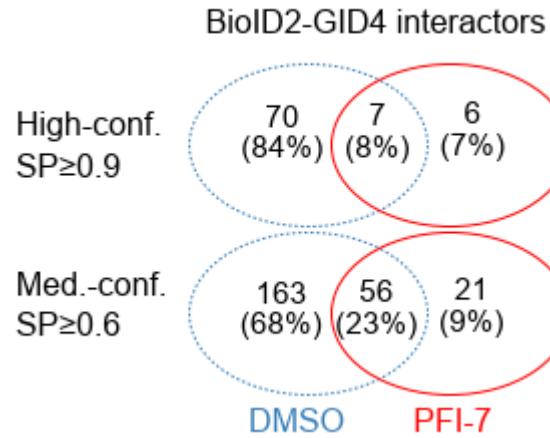
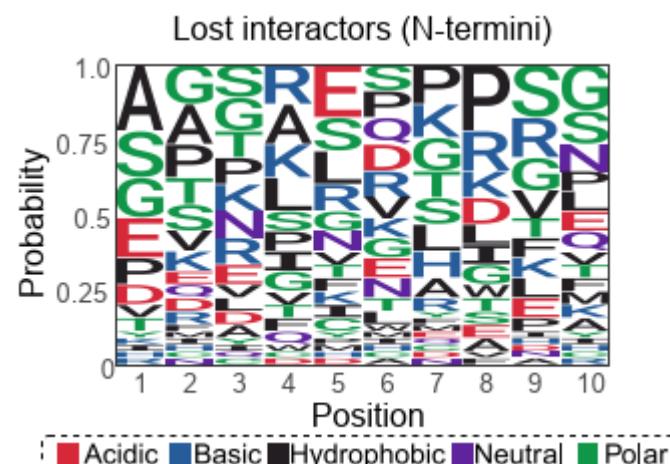
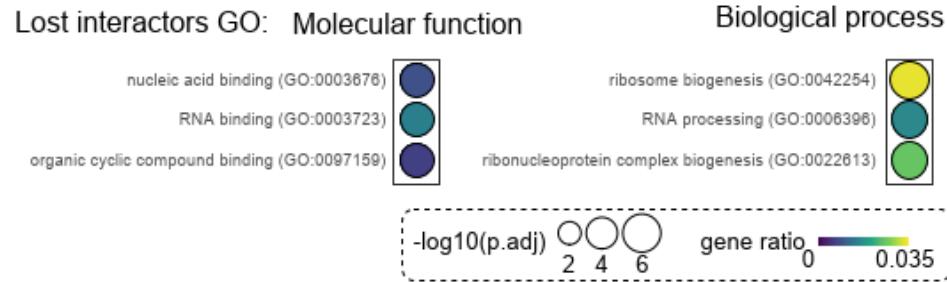
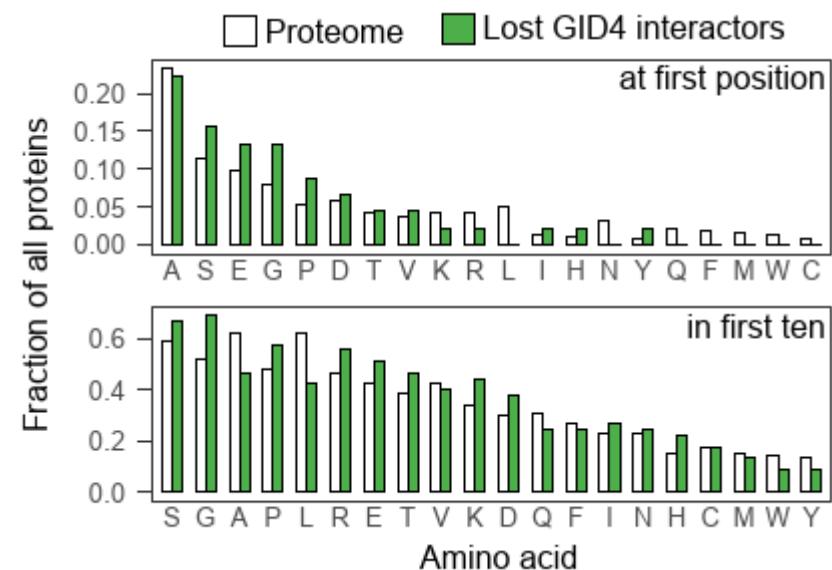
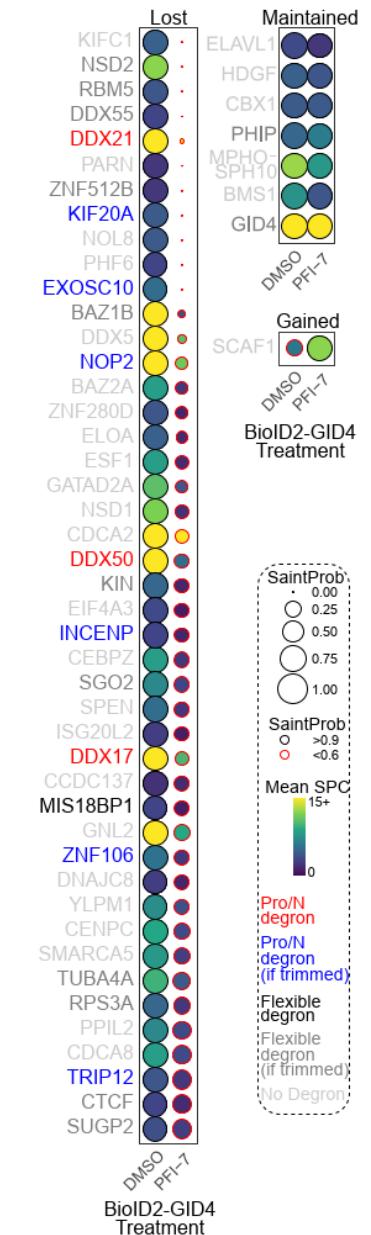
GID-4 Interactors in human Cells



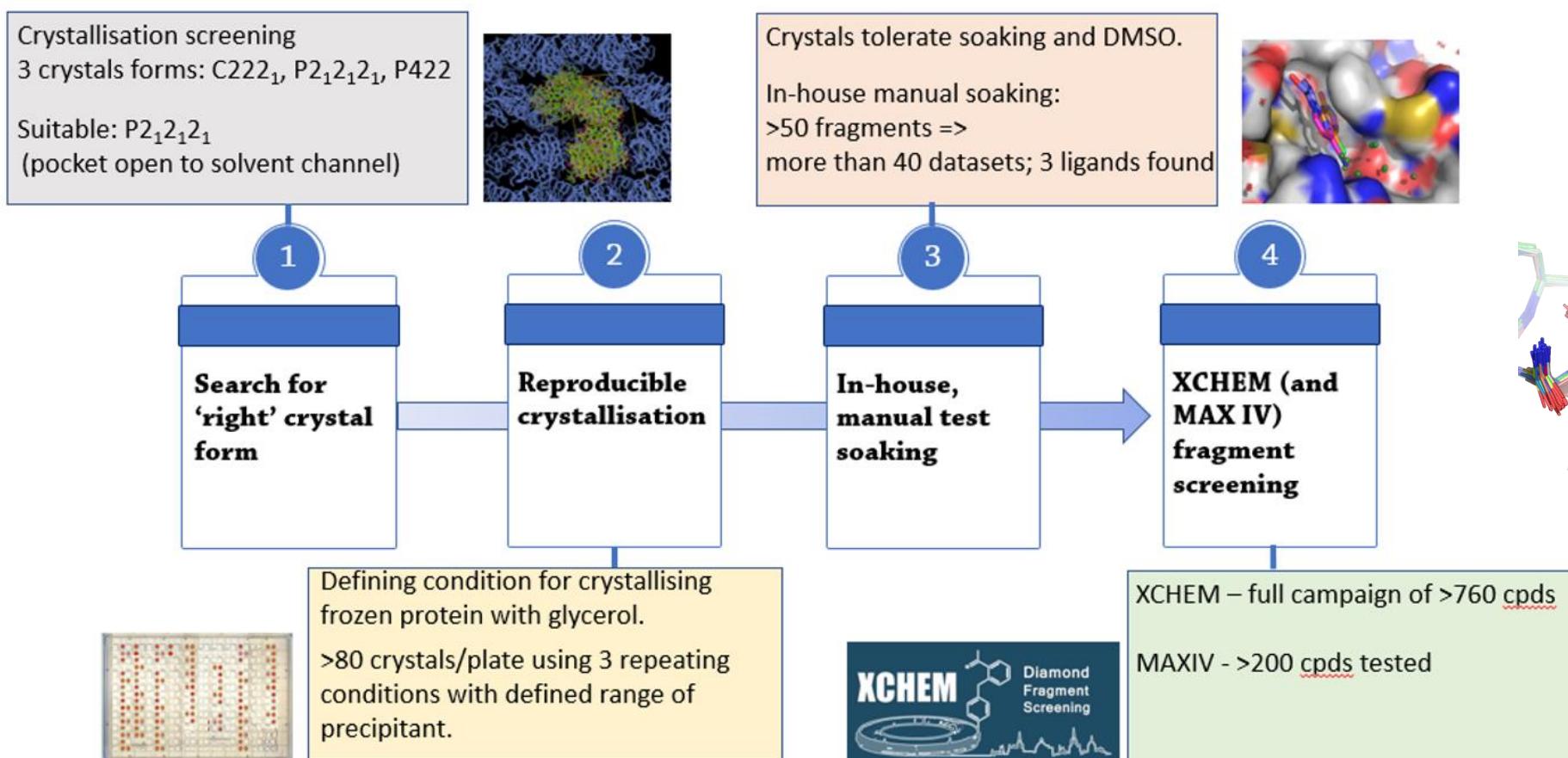
GID-4 interactors



Consequences of GID-4 E3 inhibition



HTP Crystallographic Fragment Screening

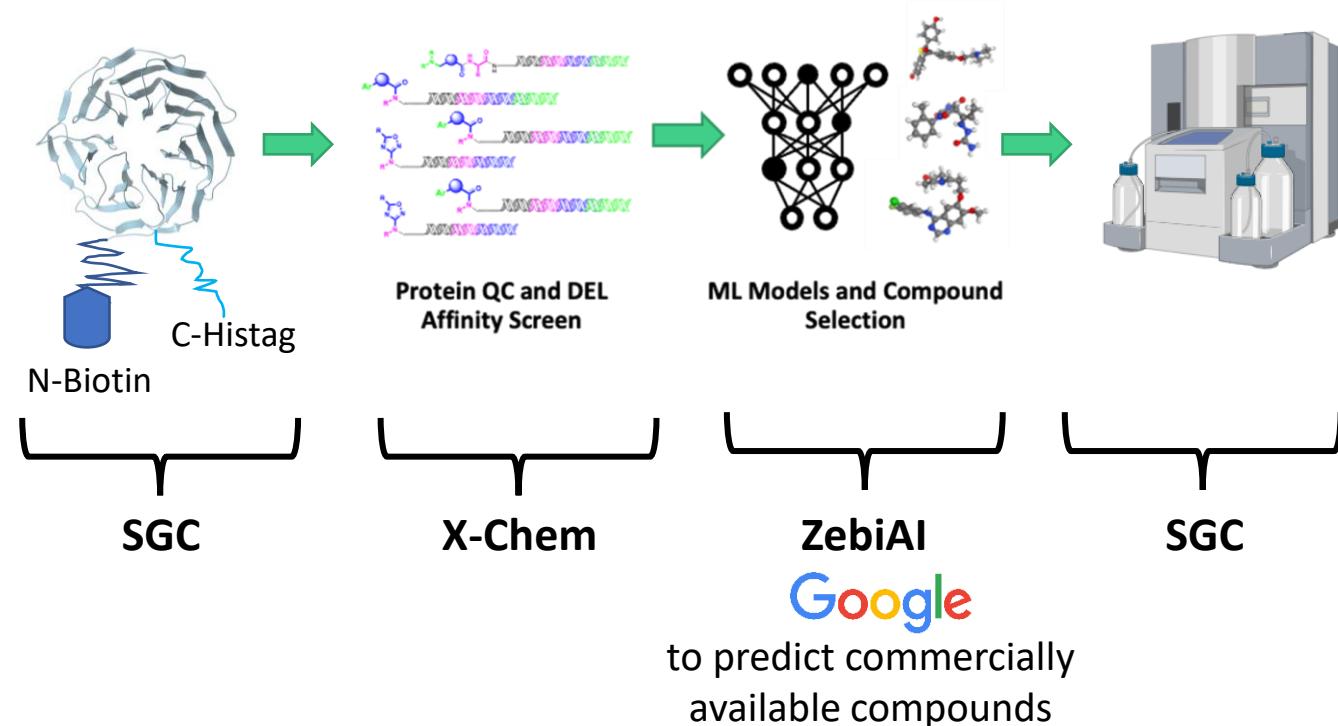


950 diffraction data sets
52 with fragments

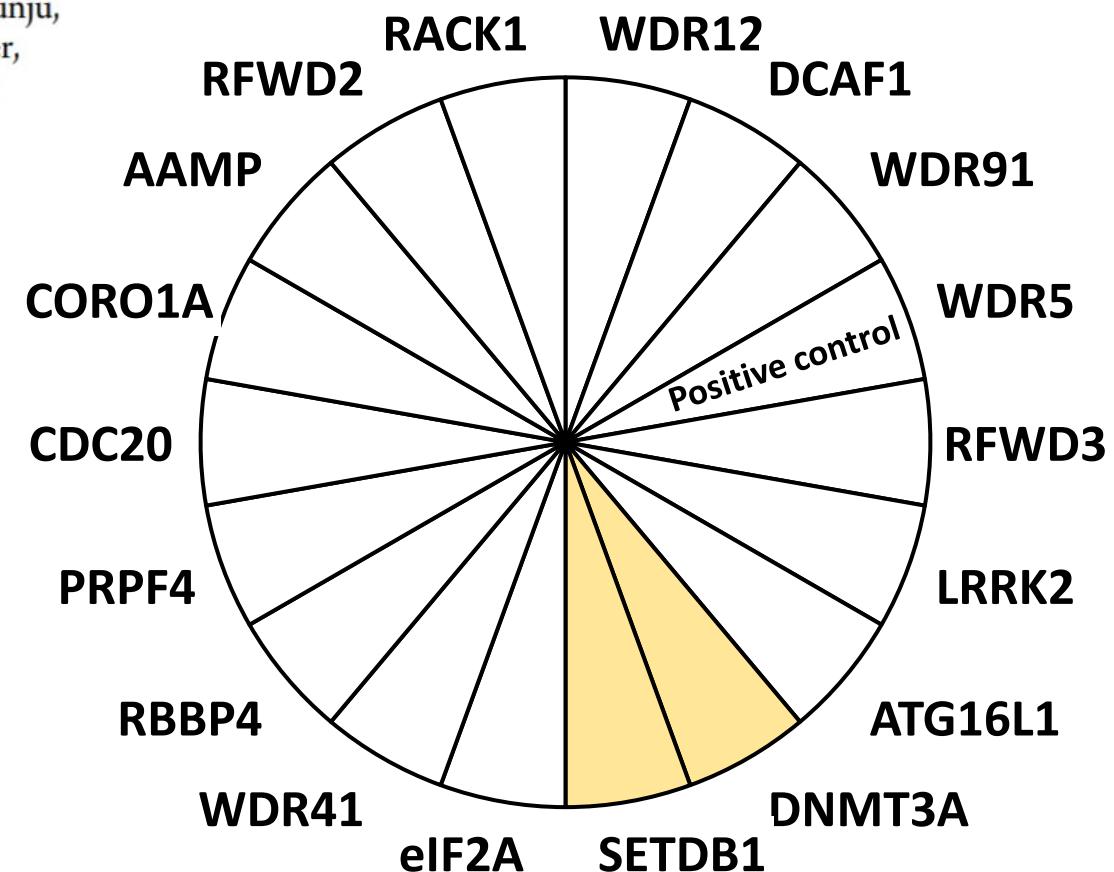
Development of pharmacophore models

Machine Learning on DNA-Encoded Libraries: A New Paradigm for Hit Finding

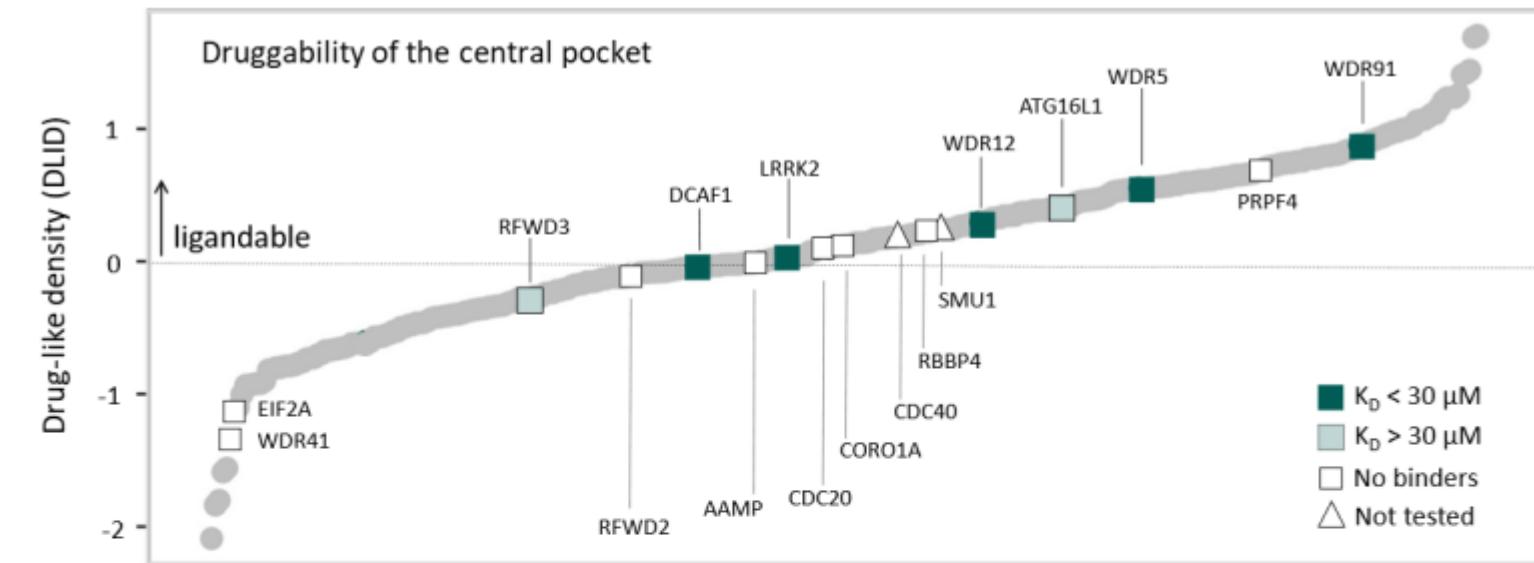
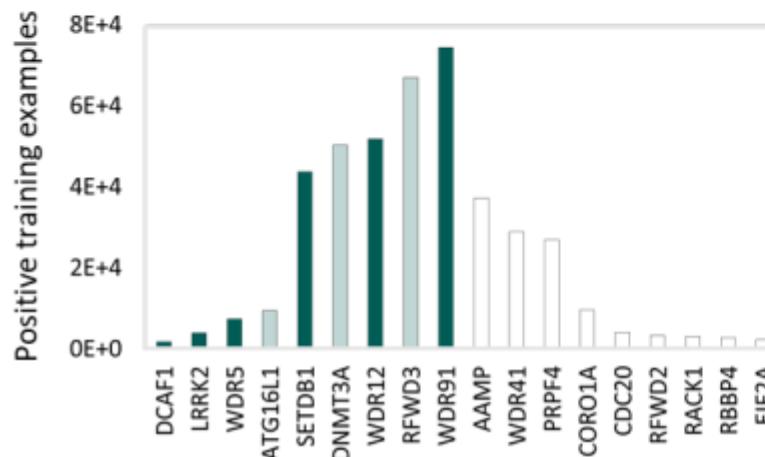
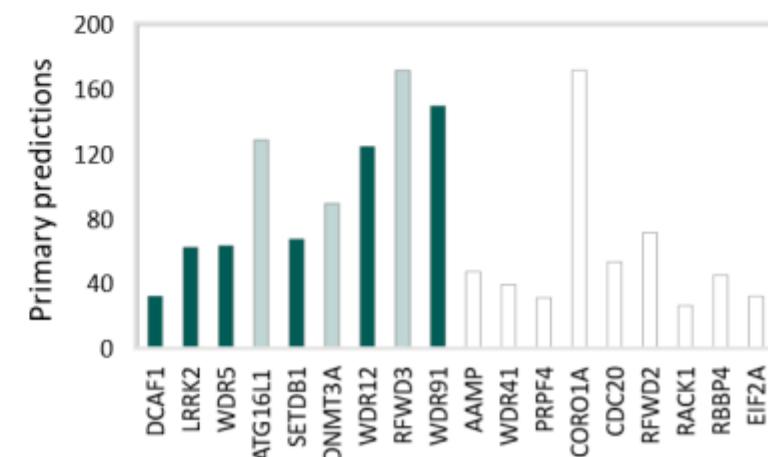
Kevin McCloskey,[‡] Eric A. Sigel,[‡] Steven Kearnes, Ling Xue, Xia Tian, Dennis Moccia, Diana Gikunju, Sana Bazzaz, Betty Chan, Matthew A. Clark, John W. Cuozzo, Marie-Aude Guié, John P. Guilinger, Christelle Huguet, Christopher D. Hupp, Anthony D. Keefe, Christopher J. Mulhern, Ying Zhang, and Patrick Riley*



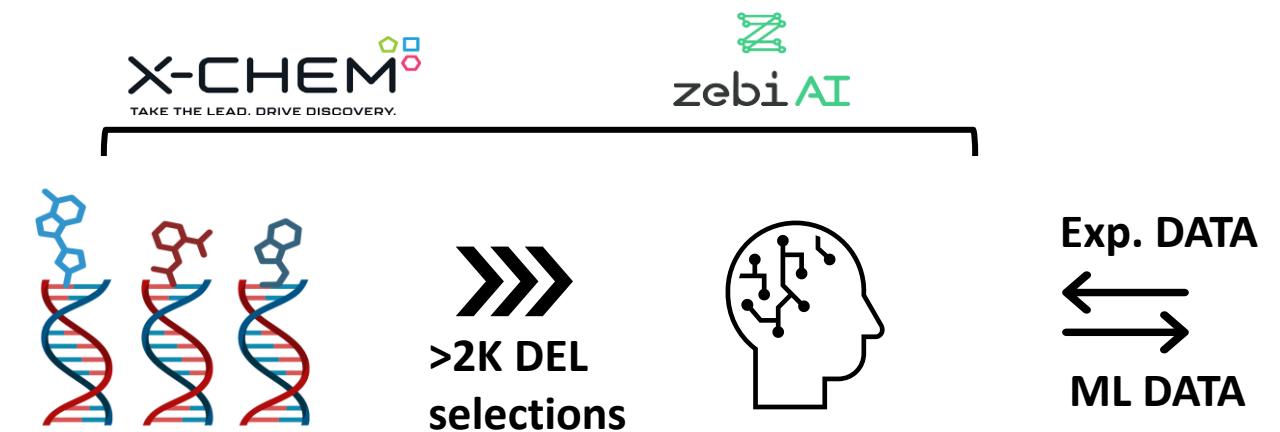
Unprecedented targets for DEL+ML screening



DEL-ML Screening

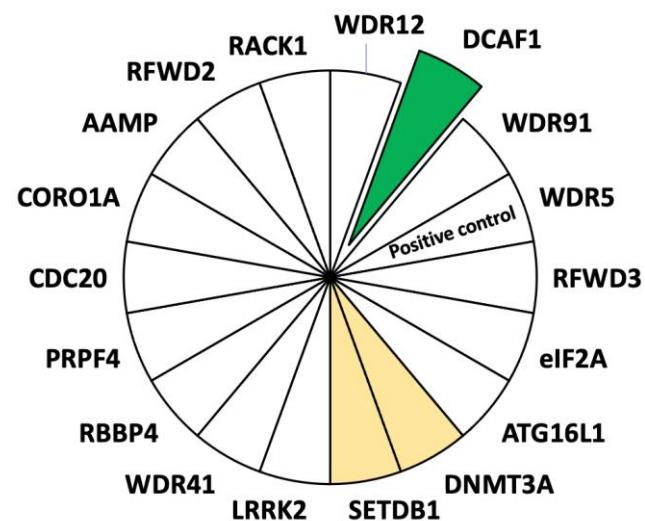
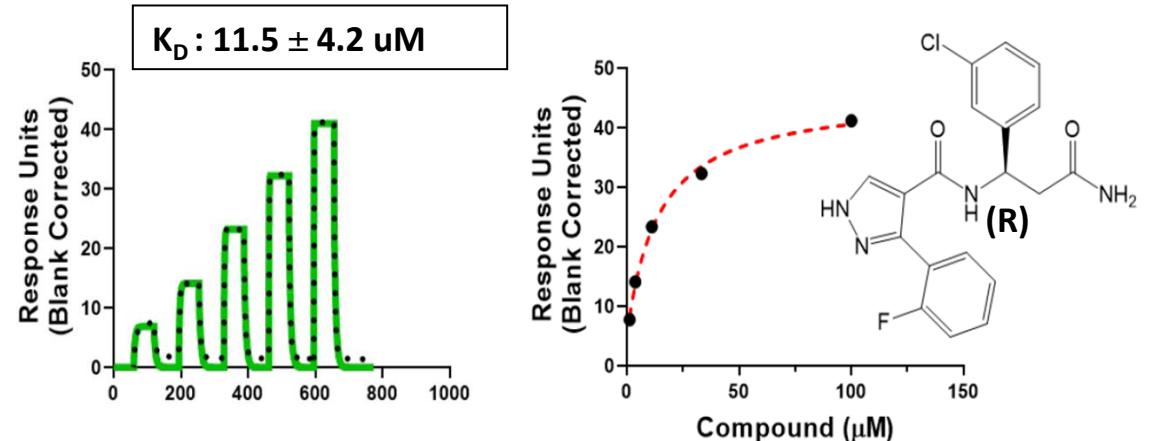


Process applied to DCAF1

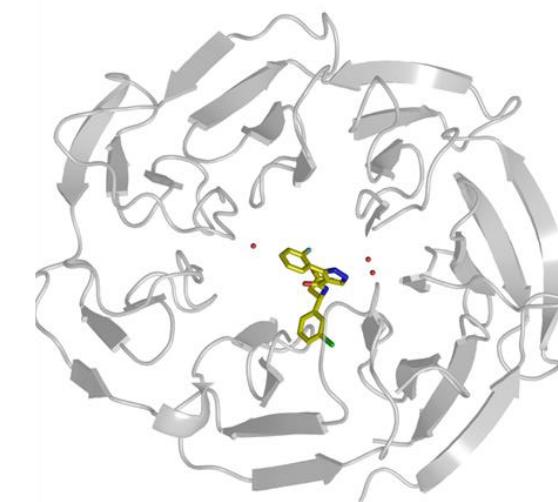


114 billion compounds screened by DEL

- 33 compounds selected through ML from Enamine REAL library



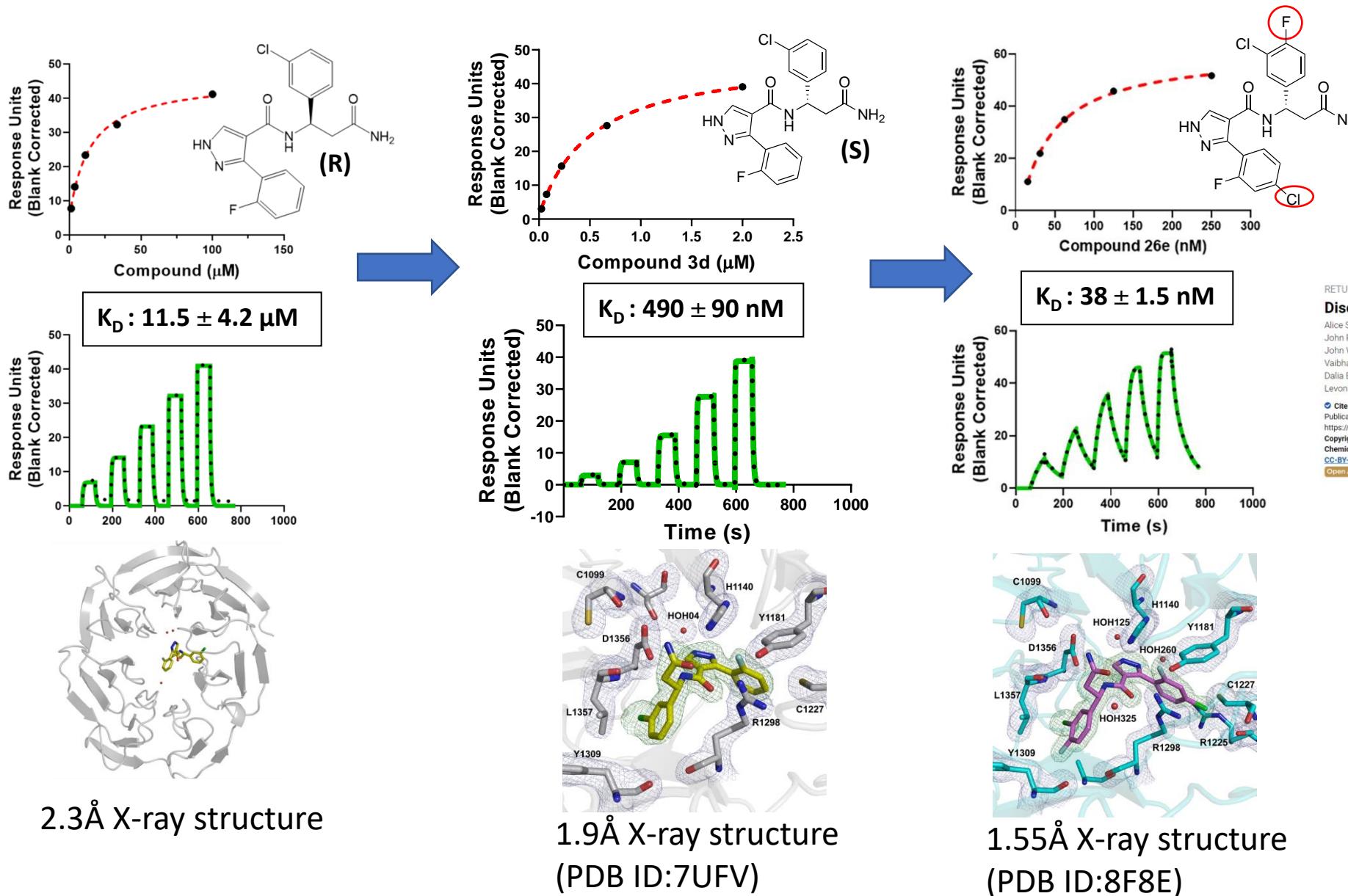
2.3 \AA X-ray structure



Experimental screening:
Alice Li, Fengling Li,
Masoud Vedadi

Serah Kimani, PDF

DCAF1: DEL+ML hit optimization



RETURN TO ISSUE | < PREV | ARTICLE | NEXT >

Discovery of Nanomolar DCAF1 Small Molecule Ligands

Alice Shi Ming Li, Serah Kimani, Brian Wilson, Mahmoud Noureldin, Héctor González-Álvarez, Ahmed Mamai, Laurent Hoffer, John P. Gullinger, Ying Zhang, Moritz von Rechenberg, Jeremy S. Disch, Christopher J. Mulhern, Belinda L. Slakman, John W. Cuozzo, Aliping Dong, Gennady Poda, Mohammed Mohammed, Punit Saran, Manish Mittal, Pratik Modh, Vaibhavi Rathod, Bhashant Patel, Suzanne Ackloo, Vijayarathnam Santhakumar, Magdalena M Szewczyk, Dalia Barsyte-Lovejoy, Cheryl H. Arrowsmith, Richard Marcellus, Marie-Aude Guié, Anthony D. Keeffe, Peter J. Brown*, Levon Halabedian*, Rima Al-awar*, and Masoud Vedadi*

Cite this: *J. Med. Chem.* 2023, 66, 7, 5041–5060
 Publication Date: March 22, 2023
<https://doi.org/10.1021/acs.jmedchem.2c02132>
 Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY-NC-ND 4.0.
 Open Access

Article Views: 12646 | Altmetric: 28 | Citations: 6 | Share | Add to | Export | RIS

- 2TB (compressed) to 50 Tb (non-compressed) of protein–ligand interaction data
- Rigorous data management integrated with experimental methods.
- Collaboration between experimentalists and data scientists.

- Cloud-based database designed to accommodate over 300 Tb of data
- Central repository for the Target 2035 screening datasets
- Experimentally validated protein–small molecule binding data (positive and negative)
- FAIR principles (Findable, Accessible, Interoperable, Reusable)
- Comprehensive documentation of experimental protocols and findings
- Machine learning-ready data datasets

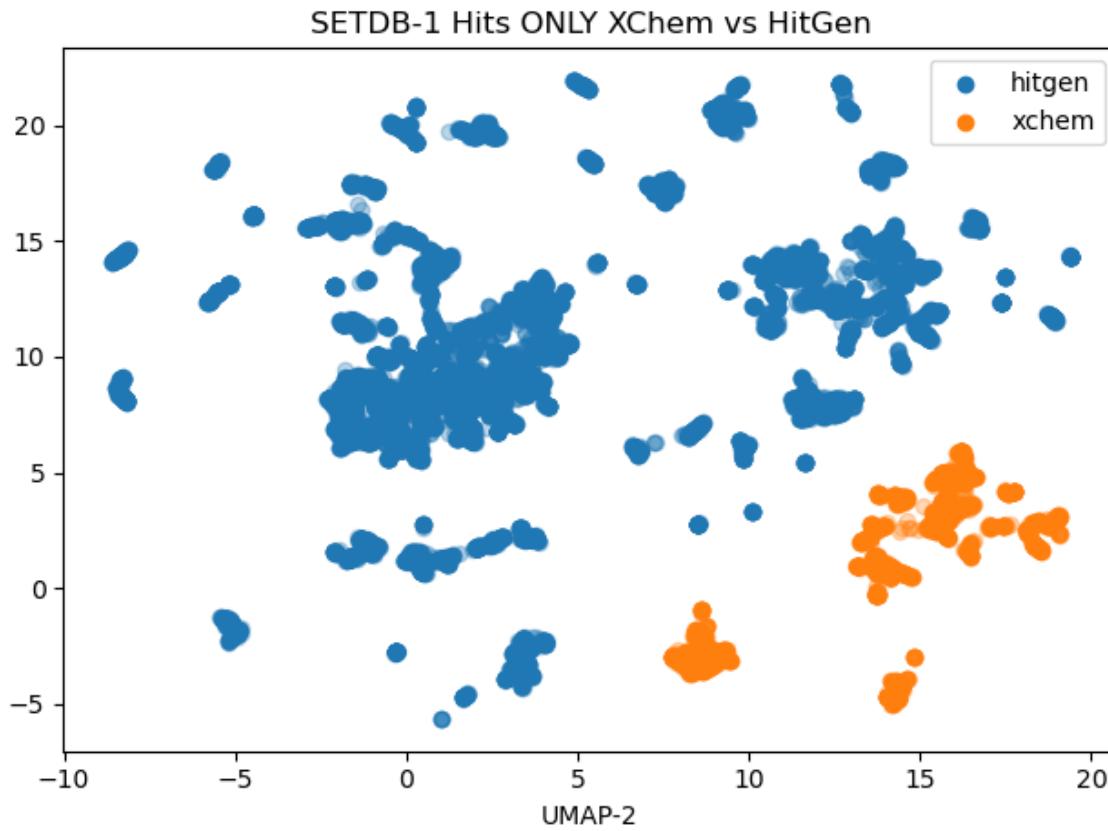
Datasets

Target Name ↑↓	Description	Selection Date ↑↓	Partner ↑↓	Data Dictionary	Download Dataset
WDR12	To identify binders to the target	2023-08-28	HitGen		Public access coming soon
SETDB1	To identify binders to the target	2023-10-20	X-Chem		Public access coming soon
RFWD3	To identify binders to the target	2023-10-20	X-Chem		Public access coming soon
DNMT3A	To identify binders to the target	2023-10-20	X-Chem		Public access coming soon

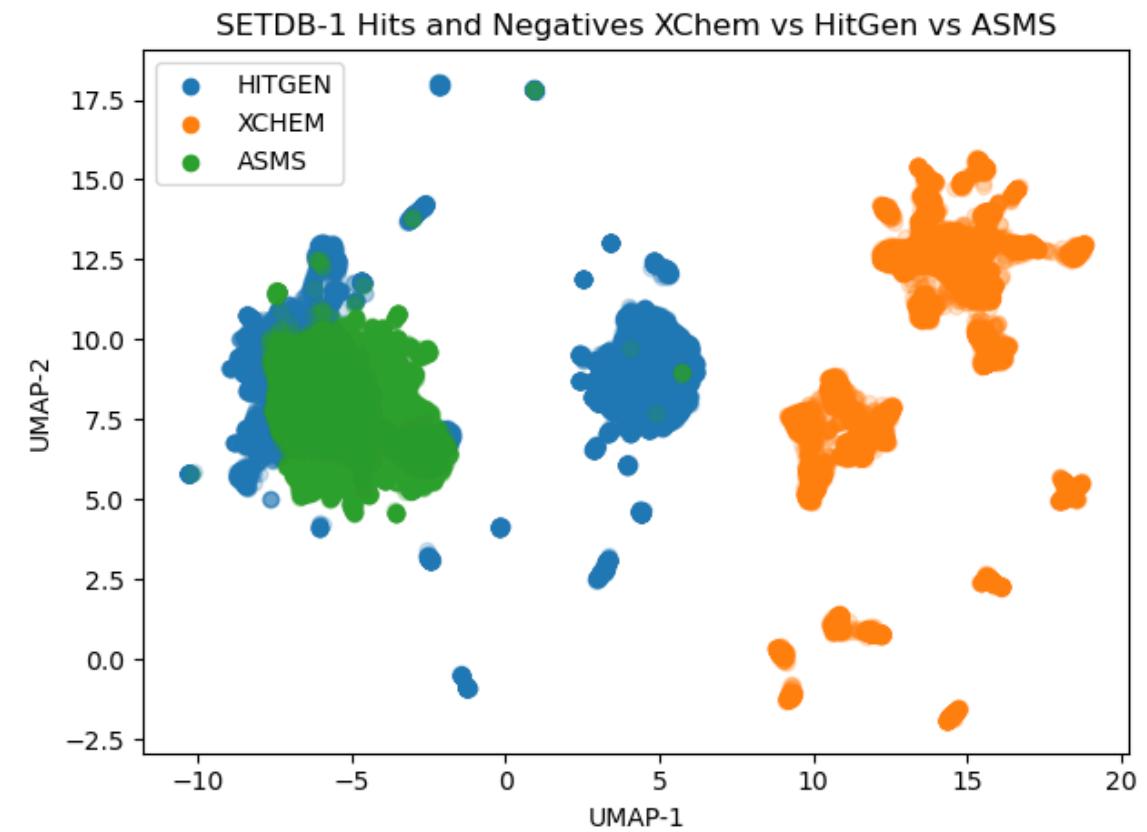
What we have learned so far?

Comparing HitGen and XChem Chemical Space

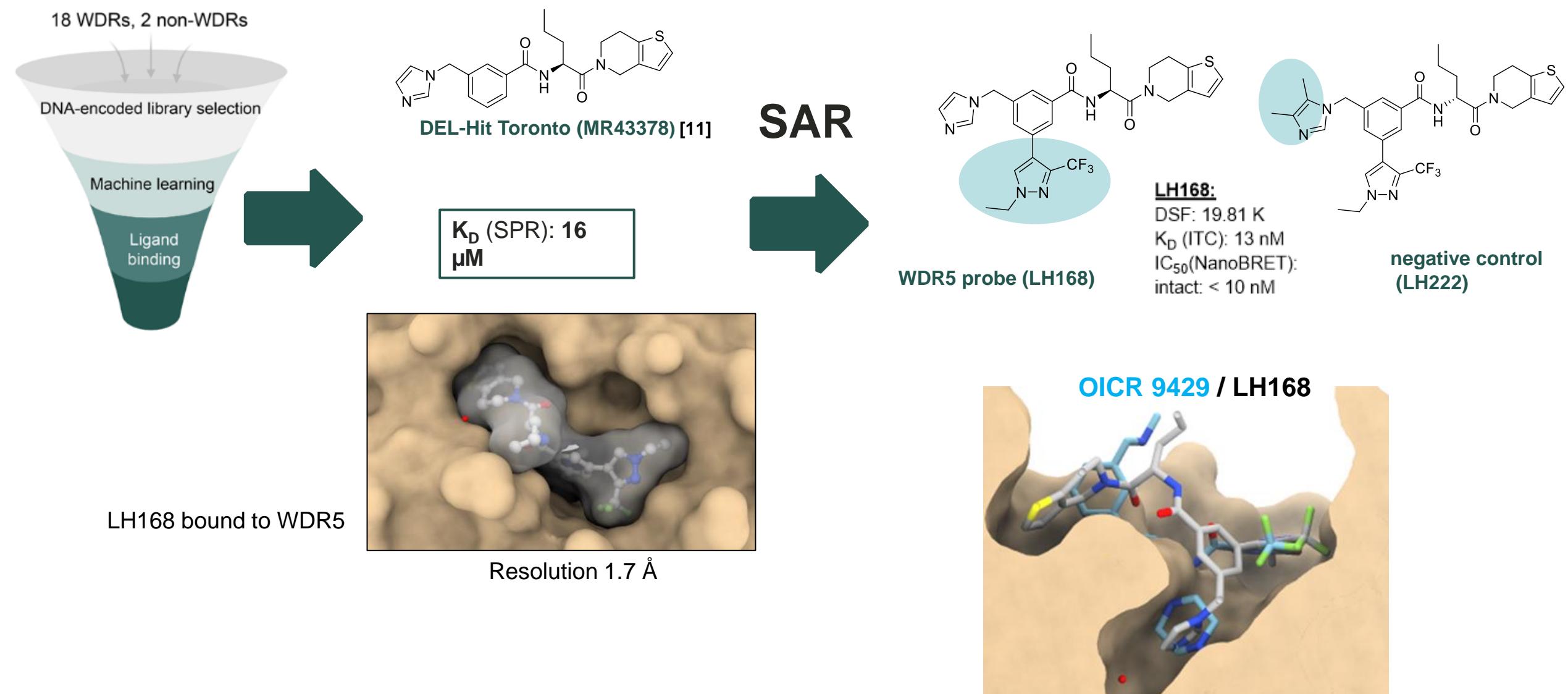
SETDB FP Dataset – Positive Training Sets ONLY



SETDB FP Dataset – Positive & Negative Training Sets



Example 1: From DEL-hit to a chemical probe for WDR5



AIRCHECK Team

Nabin
Bagale

James
Wellnitz

Shaghayegh
Reza

Matthew
Boccalon

Farnoosh
Khodakarami

Rafael
Counago

Maxwell
Morgan

Matthieu
Schapira

Benjamin
Haibe-Kains

Join Us

Contact:

Dr. Albert A. Antolin
aantolin@idibell.cat

As of October 28,
2024

Target 2035

A PROBE FOR EVERY PROTEIN

- Who: International federation of biomedical scientists (public & private sector)
- Aim: Develop and apply new technologies to create by the year 2035 chemogenomic libraries, chemical probes and/or biological probes for the entire human proteome.

Interested to share your experience, knowledge and/or results?

→ Contact: Target2035@thesgc.org

ACKNOWLEDGEMENTS

Susanne Muller-Knapp

Dinh Nguyen Ngu To
Claudia Tredup
Theresa Ehret
Amelie Menge
Johannes Dopfer
Lewis Elson
Hanna Holzmann
Sandra Häberle
Natalie Schneider
Saran Aswathaman
Sivashanmugam

Chemistry

Thomas Hanke
Sandra Röhm
Francesco Greco
Joshua Gerninghaus
Sebastian Mandel
Nicolai Raig
Athina Zerva
Ralf Braden
Aleksandar Lucic
Marko Mitrovic

PROTACs

Václav Němec
Janik Weckesser
Nebojsa Miletic
Adrian Haag
Anton Ruben
Hamann
Lasse Hoffmann

Assays

Krishna Saxena
Martin Schwalm
Florian Born
Frederic Farges
Christopher Lenz

Biochemistry/PX

Andreas Krämer
Yeojin Kim
Adarsh Kumar
Guiqun Wang
Rezart Zhubi

Collaborators

Merck

Paul Gehrzt
Beate Opelt
Corinna Rettig
Johannes Krieger

SGC/companies

- Pfizer
- Genentech
- Boehringer
- BAYER
- Takeda
- Jansen
- BMS

Promega

Matt Roberts
Kristin Huwiler

SGC

Aled Edwards
Cheryl Arrowsmith
Tim Wilson

Xiaoyun Wang
Jianxian Sun
Diwen Yang
Santha Santhakumar
Hui Peng
Levon Halabelian

Funding:

DKTK
BMBF (Proxidrugs)
Krebshilfe
MJFF
DFG
SGC
LOEWE (TRABITA)
LOEWE (FCI)

