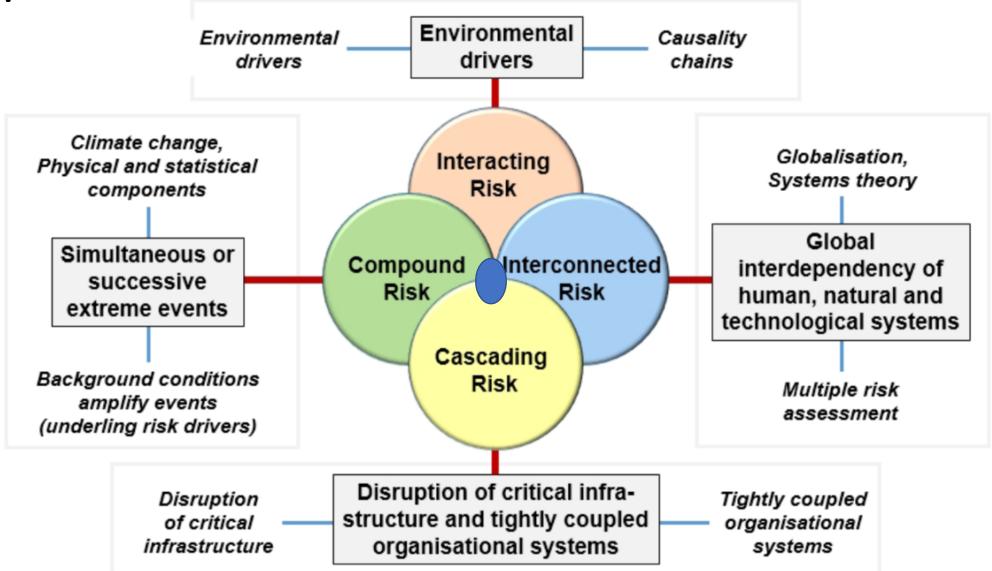


The National Academies of SCIENCES • ENGINEERING • MEDICINE


Translating Data for Motivating Local Resilience Action May 25, 2021

Jennifer Helgeson, Ph.D.

Applied Economics Office, Engineering Laboratory, National Institute of Standards and Technology (NIST)

Complex Events

Climate Information – Challenges

- Impacts can be hard to discern and attribute, especially in the case of slow onset, persistent impacts
- There are psychological, cognitive, emotional, cultural and social factors that impact individual and institutional perceptions (which also vary from those implied by classical theory).
- Three prevalent themes:
 - *Rules of Thumb*: Humans make most decisions using mental shortcuts.
 - *Framing narratives*: The collection of anecdotes and stereotypes that make up the mental filters we rely on to understand and respond to events.
 - *Market inefficiencies*: Asset prices do not accurately reflect true values [to the stakeholder].

https://www.dictionary.com/e/techscience/behavioral-economics/

Discounting and Risk Matter!

"...embeds risk management and mitigation in all planning, decision making, and development...." (FEMA, FARG, 2013)

Benefit-Cost Analyses (BCAs) consider risk using a standard "optimal"

consumption discount rate: $r_{t} = \delta + \eta g_{t}$

where r_t is the consumption discount rate at time, t

 δ is the pure rate of time preference (or utility discount rate)

η is the is the elasticity of the marginal utility of consumption

g is the growth rate of consumption

Costs & benefits of resilience via mitigation and adaptation are sensitive to the specific parameter choice for $\boldsymbol{\eta}$

Simultaneously reflects preferences that are NOT empirically consistent:

- 1. intertemporal substitution,
- 2. aversion to risk, and
- 3. aversion to (spatial) inequality

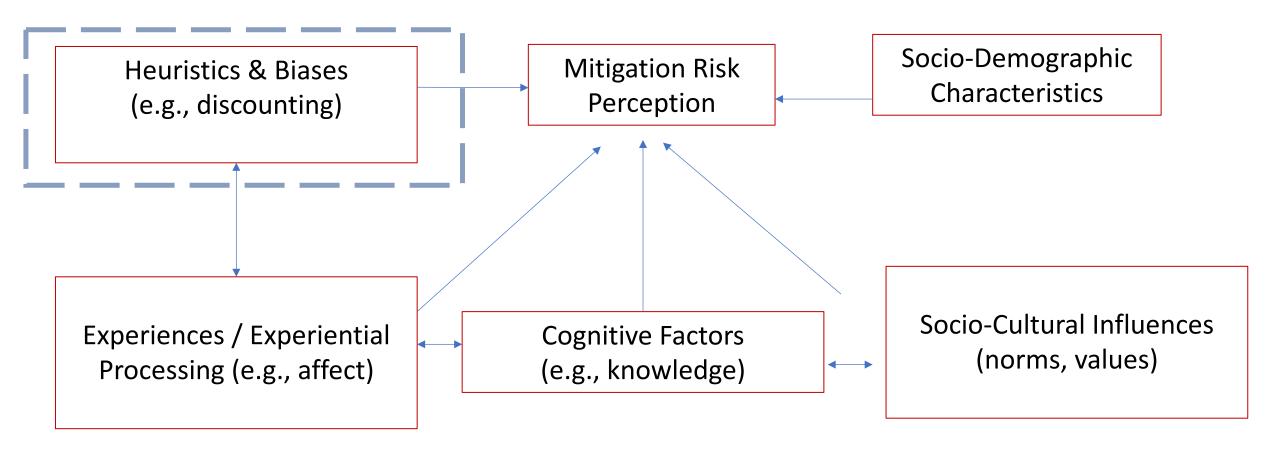
National Institute of Standards and Texhnology U.S. Department of Commerce

Helgeson et al. (2009)

Meanwhile there is a "finite pool of worry" (Linville and Fischer, 1991)

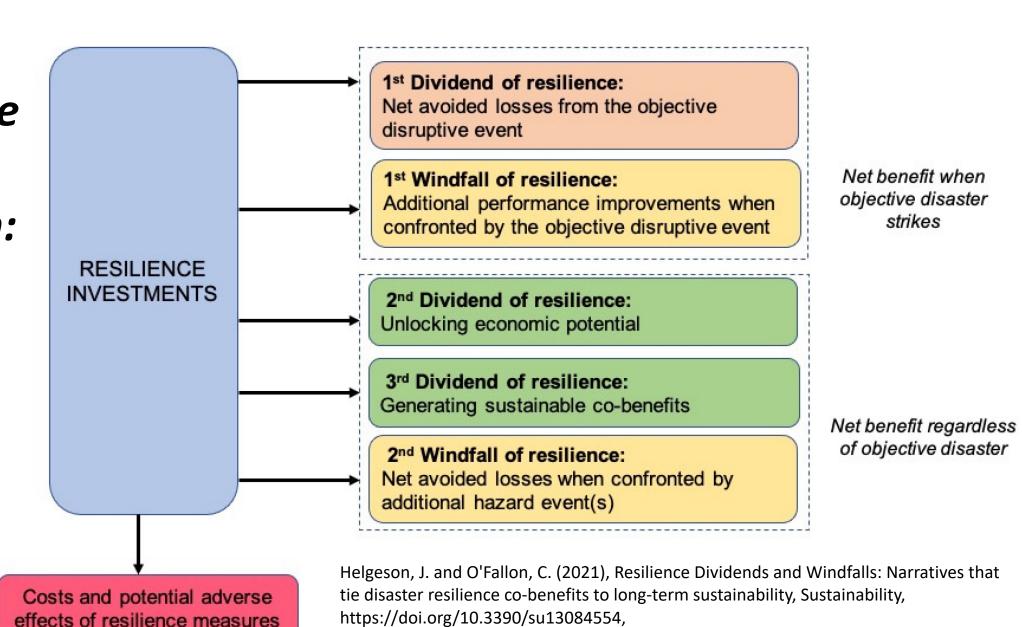
Type of resilience or competing objective met:

- survival / coping
- mitigation
- adaptation
- Social capital types
- Enabling factors
- Co-benefits
- Value proposition
- How risk accepting is the community?
- Who are the stakeholders? Bearers of risk/costs?
- Deep uncertainty?

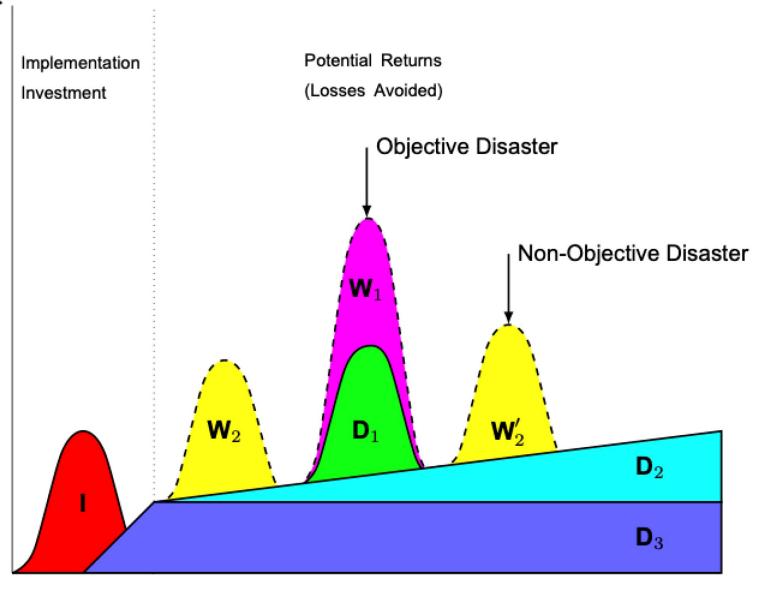

HOW THE **ECONOMIC DECISION GUIDE** FITS INTO THE **RESILIENCE PLANNING SIX-STEP PROCESS**

- 1> SELECT CANDIDATE STRATEGIES
- **2> DEFINE INVESTMENT OBJECTIVE & SCOPE**
- 3> IDENTIFY BENEFITS & COSTS
- 4> IDENTIFY NON-MARKET (NON-ECONOMIC) CONSIDERATIONS
- 5> DEFINE ANALYSIS PARAMETERS
- 6> PERFORM ECONOMIC EVALUATION
- **7> RANK STRATEGIES**

- 1) Form a Collaborative Planning Team
- 2) Understand the Situation
- 3) Determine Goals & Objectives
- 4) Plan Development
- 5) Plan Preparation, Review & Approval
- 6) Plan Implementation & Maintenance


What do we need to consider?

Adapted from the "Climate Change Risk Perception Model" (CCRPM) (Helgeson, van der Linden, & Chabay, 2012) (Ajzen, 1991; Daellenbach et al., 2018).


Narratives of co-benefits matter!

Importance of project evaluation: Resilience **Dividends** and Resilience **Windfalls**

Importance of project evaluation: Net co-benefits in the form of Resilience Dividends and Resilience **Windfalls**

Helgeson, J. and O'Fallon, C. (2021), Resilience Dividends and Windfalls: Narratives that tie disaster resilience co-benefits to long-term sustainability, Sustainability, https://doi.org/10.3390/su13084554,

Investment Distributions: I

Dividend Distributions: $\mathbf{D}_1, \mathbf{D}_2, \mathbf{D}_3$

Windfall Distributions: $\mathbf{W}_1, \mathbf{W}_2$

years

EDGe\$ Tool Online: https://edges.nist.gov/

NIST Economic Decision Guide

The Economic Decision Guide Software (EDGe\$) Tool brings to your fingertips a powerful technique for selecting cost-effective community resilience projects. This decision support software is designed to support those engaged in community-level resilience planning, including community planners and resilience officers, as well as economic development, budget, and public works officials. It provides a standard economic methodology for evaluating investment decisions required to improve the ability of communities to adapt to, withstand, and quickly recover from natural, technology, and human-caused disruptive events. The tool helps to identify and compare the relevant present and future resilience costs and benefits associated with new capital investment versus maintaining a community's status-quo. The benefits include cost savings and damage loss avoidance because enhancing resilience on a community scale creates value, including co-benefits, even if a hazard event does not strike.

Start New Analysis

Open Existing Analysis

Thank You

Jennifer Helgeson

Jennifer.Helgeson@nist.gov

Planning Guide: https://www.nist.gov/topics/community-resilience/planning-guide

EDGe\$ Online Tool: https://edges.nist.gov

Website: https://www.nist.gov/topics/community-resilience

https://www.nist.gov/people/jennifer-f-helgeson

