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) International Guidelines on Natural and
— 1 Nature-Based Features for Flood Risk

) Management

Coastal Wetlands and Tidal Flats

Authors: Candice D. Piercy, Nigel Pontee, Siddarth Narayan, Jenny Davis, Trevor Meckley
Key Messages

1. Coastal wetlands and tidal flats reduce flood and erosion risks in coastal environments

2. Projects can include conserving existing wetlands, restoring degraded wetlands, or
constructing new wetlands

3. Performance is controlled by location, coastline geometry, vegetation morphology, and
storm characteristics

4. Wave height reduction is well documented over moderate spatial scales and depends on
topography, vegetation characteristics, and storm characteristics

5. Storm surge reduction requires greater spatial scales (i.e., wetland size and extents) "'W"‘



) International Guidelines on Natural and
— 1 Nature-Based Features for Flood Risk

) Management

Coastal Wetlands and Tidal Flats

Authors: Candice D. Piercy, Nigel Pontee, Siddarth Narayan, Jenny Davis, Trevor Meckley
Key Messages (cont’d)

6.
7.
3.

10.

Coastal wetlands can provide flood storage; efficacy depends on location and design
Projects can draw upon extensive experience in marsh and mangrove restoration

Provided with the appropriate ecological and ambient wave energy conditions, coastal
wetland NNBF can be self-maintaining over time.

Consider where wetland NNBF will persist now and under future climate and SLR scenarios
Performance of wetland NNBF will vary over time as vegetation establishes, develops, and
recovers after disturbances

Coastal wetlands also provide numerous
cobenefits (e.g., habitat, Carbon sequestration)




Motivation for Mangroves: Damage Observations after
Hurricane Irma (2017) in the Florida Keys
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Key West  Big Pine Key
Wind Velocity (m/s) 44.8-49.2 49.3-53.6
Inundation Depth (m) 1.23-2.14 1.53-2.75

Significant Wave Height (m) 0-1.83 0.92-2.74



Post—Storm Damage Assessments

* NEU-USNA Collaborative Effort
e July 2017- March, 2018

* Key West and Big Pine Key

* Investigate relationship between shoreline
resiliency, structural vulnerability, and
shoreline management

e October Survey: 263 residential
structures, 332 shorelines




Parcel-Scale Shoreline Variability
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* Shoreline archetypes based on
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* Four-point damage scale

* Mangroves show resilience




Fragility Relationships: Relate Hazard Shoreline Type, and

Damage O
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 Similar to protection noted in other studies (e.g.
India (Danielsen et al. 2005), SW FL (Zhang et al.
2012)) for km-scale forests, but for 10-50 m
cross-shore forest widths
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Tomiczek, T., O’'Donnell, K., Furman, K., Webbmartin, B., and Scyphers, S. (2020). Rapid Damage Assessments of Shorelines and Structures in the Florida Keys after Hurricane Irma.
21 (1) 15019006. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000349.
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Need to Quantify Mangrove Performance Metrics

* Previous Studies of wave attenuation through vegetation
* Anderson and Smith (2014) — Spartina alterniflora mimics, emergent and near-emergent
Ozeren et al. (2014) — idealized rigid vegetation, live wetland vegetation, emergent
Hu et al. (2014) — idealized rigid wetland vegetation, emergent
Maza et al. (2017, 2019) — Rhizophora, 1:12 and 1:6 geometric scales
Chang et al. (2019) — Rhizophora, 1:7 geometric scale

Hydrodynamic

* Generally quantify a drag coefficient Vegetation Parameters
* e.g., Mendez and Losada (2004): Parameters X
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Full-Scale Physical Model of

Wave Attenuation through
R. mangle

Piston-type wave maker
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Specimen Design

Dimension  Full Scale (m)

DBH 0.114
0 0.029
HR max 1.445
ﬁ XR max 2.58
- |P DBH N 14
_________ —
HR_ma

Material Total Length
PEX 3867 ft
PVC 625 ft

xR_max

* |dentical to 1:2-geometric scale
specimens constructed at ERDC




LiDAR Characterizarion of Projected Area

1 cm bin
Root hole elevations
—Known trunk value
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* Accurate to within 2% of known stem diameters, 10% of known root diameters
* Allows full characterization of vertical variation of projected area, uncertainty




Mangrove Effects on Hydrodynamics
* 4 water depths tested s -
*h,,=070mto1.82m

* Irregular and regular wave
conditions

*H _,,=0.1mto0.73 m

I,

. Tp .

91 S to 7.45

—-j:“-“-',=‘1!*-.»"” = ’ ? Y




Empirical Wave Height Decay Coefficients
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* Decay coefficients are a function of water depth
* Doubling forest density increased decay rate by factor of ~2




Drag Coefficient Including Uncertainty
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Kelty, K., Tomiczek, T., Cox, D., Lomonaco, P., and Mitchell, W. Prototype-Scale Physical Model Study of Wave Attenuation by a Mangrove Forest of Moderate Cross-shore
Thickness: LiDAR-based Characterization and Reynolds Scaling for Engineering With Nature. Frontiers In Marine Science, Revisions Submitted.
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