Compounding & Cascading Events

Mitigating Impacts: Developing Solutions and Avoiding Unintended Consequences

May 2022

Ulster Dutchess NJ NY New York - Stewart International Airport (SWF) Putnam Westchester Orange Passaic George Washington Bridge Bronx Teterboro | Airport George Washington **Bridge Bus Station** Lincoln Morris Tunnel/ Essex Bus Terminal Airport (LGA) PATH. Holland Tunnel Oueens World Trade Center AirTrain EWR Greenville AirTrain John F. Kennedy Brooklyn International Newark Liberty Eliza beth Marine Terminal Airport (JFK) International Airport (EWR) Union Marine Terminal Rail Yard Bayonne Bridge 65th Street Goethals Rail Yard Howland Hook Marine Terminal Staten Island Middlesex Outerbridge

Our Facilities

Aviation

- · John F. Kennedy International Airport
- · LaGuardia Airport
- Newark Liberty International Airport
- · Stewart International Airport
- Teterboro Airport

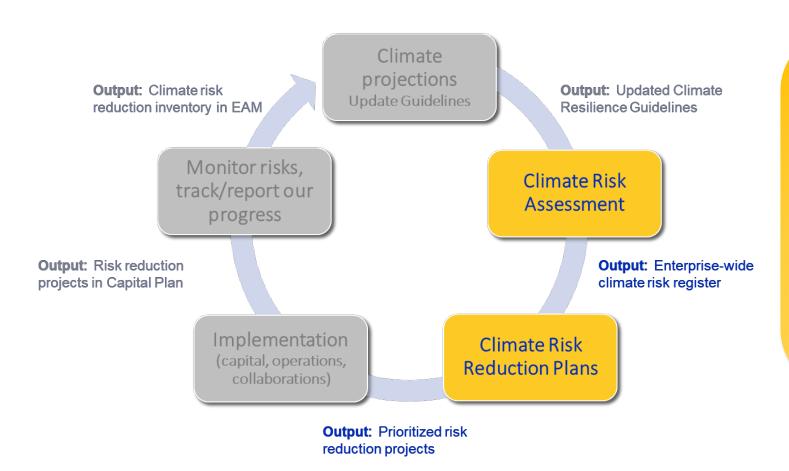
Bridges, Tunnels & Terminals

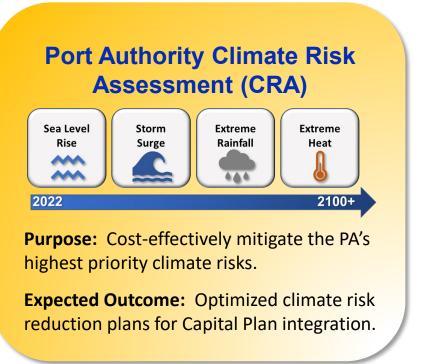
- · Bayonne Bridge
- George Washington Bridge
- · Goethals Bridge
- Outerbridge Crossing
- Holland Tunnel
- Lincoln Tunnel
- Port Authority Bus Terminal
- George Washington Bridge Bus Terminal
- Journal Square Transportation Center

Port Commerce

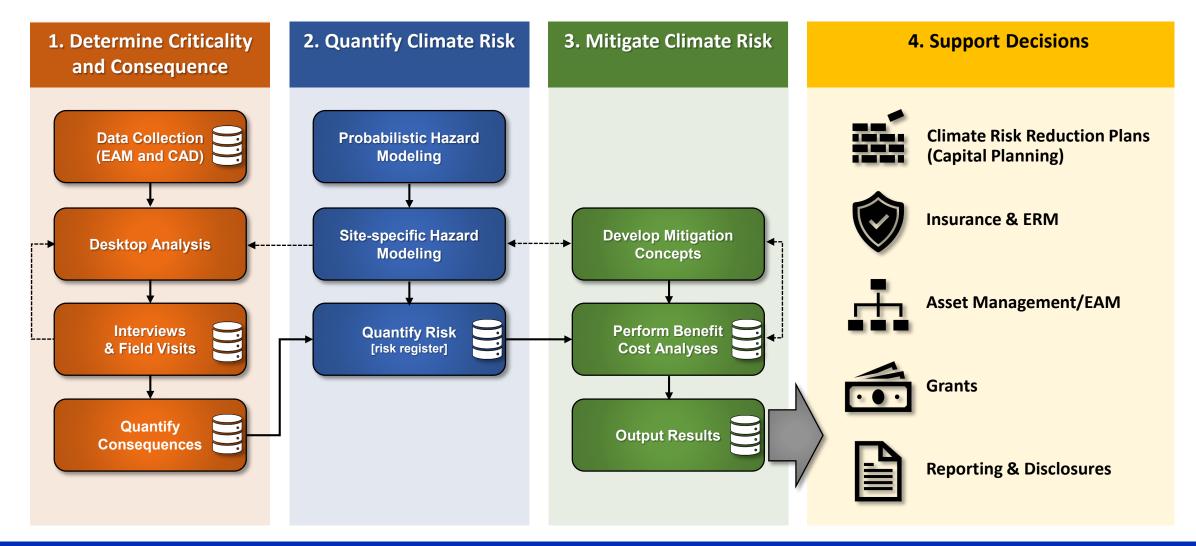
- Port Jersey-Port Authority Marine Terminal
- · Brooklyn-Port Authority Marine Terminal
- Elizabeth-Port Authority Marine Terminal
- · Howland Hook Marine Terminal
- Port Newark

Port Authority Trans-Hudson


- PATH Rail Transit System
- Journal Square Transportation Center


The World Trade Center

Resilience Cycle


An Iterative Approach to Building Resilience at PANYNJ

CRA Workflow

DRAFT

Digital Assessment Platform (DAP)

The "DAP" is the CRA's primary decision-support tool. It leverages engineering/scientific data to establish complex systems relationships, quantify risks, analyze mitigation alternatives, and develop optimized climate risk reduction plans.

Assets

Inputs

- Enterprise Asset Management (EAM) data
- Field data
- "Outside-the-gates" data
- Replacement costs
- · Facility-scale revenue loss; regional economic loss

Functions & Outputs

- System hierarchies
- Asset interconnectivity/ interdependencies
- Consequence assignments (to assets/subsystems)

Hazards

Inputs

 Probabilistic hazard data and models (including coastal, wave, stormwater), present - 2100

Functions & Outputs

- Asset-level risk analysis (probability * consequence)
- Asset-scale risk register

Mitigations

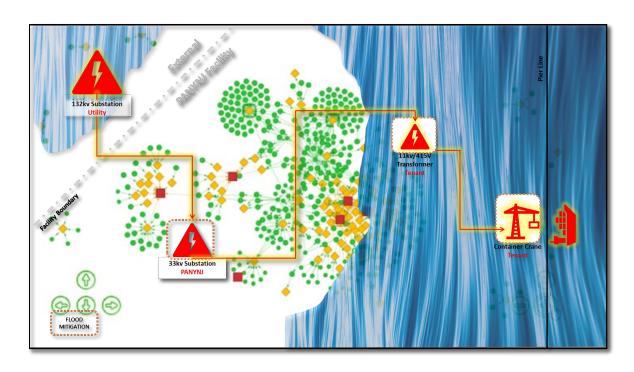
Inputs

 Mitigation concepts (preengineering level)

Functions & Outputs

- Mitigation alternatives analysis ("Mitigation Explorer" module)
- Mitigation benefit-cost ratios

Climate Risk Reduction Plans


Functions & Outputs

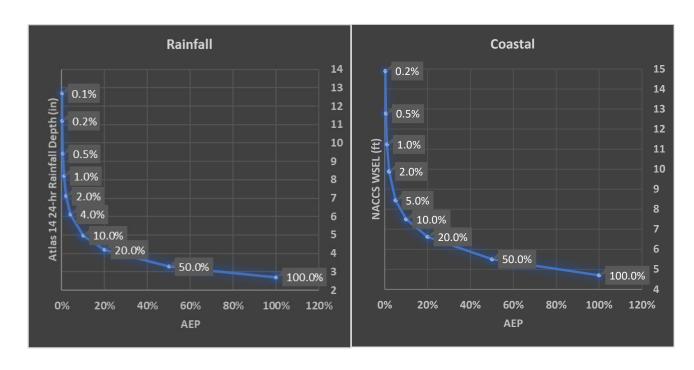
- Optimized mitigation program(s)
- · User-defined parameters, including:
- Cost: Fiscally constrained/unconstrained
- o Discount rate: Standard, ESG, custom
- Scale: Enterprise/Department/Facility
- Hazard: All hazards or single hazard
- o Consequence: All or single consequence
- o Risk Tolerance: Worst-case, model average
- Timeframe: Defined time range(s)
- Jurisdiction: State/locality

Cascading Impacts

Challenge: Quantifying Upstream/Downstream Consequences

CRA APPROACH TO CASCADING IMPACTS

- Using Enterprise Asset data, DAP algorithm develops operational interdependencies between systems/assets
- DAP computes the estimated operational impacts of hazard scenarios, assigns consequences by asset/subsystem:
 - Regional economic loss
 - Revenue loss
 - Replacement cost
- Informs mitigation priorities


Research Needs:

- Integrate interdependency mapping into standard Enterprise Asset Management practice
- Create inter-agency "collaboration platforms" to explore interdependencies and shared mitigations

Compound Events

Challenge: Integrating Compound Events into Risk Modelling

CRA APPROACH TO COMPOUND EVENTS

- Keep storm surge and rainfall Annual Exceedance Probabilities <u>separate</u> for risk quantification purposes (i.e., no compound probabilities).
- Conduct compound event scenario analysis, focused on higher AEP events (e.g., 2-year surge; 10-year rainfall), without consideration of probability.
- Engage Scientific Advisory Group for future direction.

Research Needs:

- More "ready-for-practice" scientific guidance on compound probabilities to establish credible methods
- Inclusion of rainfall in coastal storm modeling to derive compound probabilities from simulated datasets

Thank You!

www.panynj.gov

