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Staple food production in China
624 million tone in 2022
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CH4 emission from rice paddy
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1 kg CH4 = 27 kg CO2



N2O emission from nitrogen fertilizer use

PK

NPK

1 kg CH4 = 298 kg CO2



CO2 emissions from energy consumption
Fertilizers

Tillage

Irrigation 

Diesel (3.9 kgCO2/kg)

Electricity(1 kgCO2/kWh)

Diesel (3.9 kgCO2/kg)

Harvesting

N (8.3 kgCO2/kg)
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GHG emissions from staple crop production 

Chemical 

production 

37%

Energy 

consumption

11%

CH4 emission 

38%

N2O emision

14%

-56  
SOC

723 total

667 net

Rice 

60%
Wheat 

18%

Maize 

22%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

水稻 小麦 玉米

1.79

0.93
0.82

Rice Maize Wheat 

kg CO2/kg
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Spatial and temporal variation in emission

Xia et al., 2023, Nature Food

Time trend of emissionsSpatial distribution of agricultural emission



Mitigation options

• CH4 emission from rice paddy
• water management
• residue management
• Others

• N2O emission from fertilizer use
• Optimized N application 
• Enhanced efficiency N fertilizers

• Soil carbon sequestration 
• Crop residue returning
• Increase plant biomass

2020.9.22，the 75th United 
Nations General Assembly

Peak emission before 2030
Carbon neutrality before 2060
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Off-season straw application

Crop residue management to reduce CH4 emission

Yan et al., 2005, GCB
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N2O mitigation options

● Enhanced efficiency N fertilizers

InhibitorsResin-based CRF

Controlled-release N fertilizer (CRF) 

● Optimized N application

Nitrification inhibitor (NI)  
Urease inhibitor (UI)  

Increasing N splitting frequency  
Applying N deep placement   
Reducing N rate under soil N test  



SOC sequestration in croplands
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 +SOC：crop residue return (44% to 82%)
 -CH4 ： Intermittent irrigation 
 Optimal N use：N rate -15%（-N2O and -CO2)

Provincial reduction 2~43%

Unable to achieve carbon neutral 

Xia et al., 2023, Nature Food
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Conventional mitigation options (S1)



Low SOC sequestration efficient under straw application

Jiang et al., 2012, SSPN

Paddy field：3-10%

Jiang et al., 2014, GBC

Upland field：1-9%



Trade-off between SOC and CH4 emissions in paddy

CO2

CH4

SOC

CH4

oxidation

H2, HCO3−, 
CH3COO−Straw

Proportion of straw C ends in CH4
3-11%

• 1 kg CH4=27 kg CO2 in GWP

• Straw-induced CH4 emission (kg CO2-e) = 9.8 times SOC increase (CO2-e)



(1) Rice field: -17%
MBN +38.4%
DOC +15.4%
Denitrification(N2O

(2)  Upland field: +22%
SWC +14%
DOC +24.2% 

N2)

Effects of straw on N2O emissions

Xia et al., 2018, GCB



Effect of biochar application

Xia et al., 2023, Nature Food



Conventional options + Biochar (S2)

Xia et al., 2023, Nature Food
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 +SOC：Biochar application (use 82% straw)
 -CH4：Intermittent irrigation, biochar 
 Optimal N use：N rate -15%（-N2O and -CO2)

Provincial reduction 40~80%

Unable to achieve carbon neutral 

emissions emissions emissions sequestration



Energy substitution effect of biochar production 

Using by-products (bio-oil and bio-gas) for clean energy prodution

Jouhara et al., 2017, Thermal Science and Engineering Progres Gao et al., 2017, Energy



Using by-products (bio-oil and bio-gas) for clean energy prodution

https://bioenergy-concept.com/pyrolysis/

Energy substitution effect of biochar production 



Conventional options + Biochar + Energy substitution (S3)

Xia et al., 2023, Nature Food

 +SOC：Biochar application (use 72% straw)
 Energy substitution: -CO2
 -CH4：Intermittent irrigation, biochar
 Optimal N use：N rate -15%（-N2O and -CO2)

Provincial reduction 95~118%

Achieved carbon neutral 
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Summary 
 Staple crop production is an important and steady sector

of GHG emissions, with CH4 from rice paddy the dominant
source.

 Conventional mitigation options can largely reduce GHG
emissions, but not sufficient to achieve carbon neutrality,
due to the trade-off relationship between GHG emissions
and SOC sequestration resulting from crop straw return.

 Straw-derived biochar application coupled with energy
capture has the potential to achieve carbon neutrality for
staple food production in China.

 Constrains include: technology to capture and store
energy, market mechanisms to adopt low carbon practices
in agriculture, MRV methodologies.
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