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Staple food production in China
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CH, emission from rice paddy
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N,O emission from nitrogen fertilizer use
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CO, emissions from energy consumption

Fertilizers e
Irrigation
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Soil carbon stock change: CO, source or sink
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GHG emissions from staple crop production

667 Tg CO,-eq as of 2018, ~5% of nation total GHG
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Spatial and temporal variation in emission

Spatial distribution of agricultural emission Time trend of emissions

Xia et al., 2023, Nature Food



Mitigation options

* CH, emission from rice paddy

2020.9.22, the 75t United « water management
Nations G | Assembl :
ations Leneral Assembly - residue management
* Others

Peak emission before 2030
Carbon neutrality before 2060

* N,O emission from fertilizer use
* Optimized N application
 Enhanced efficiency N fertilizers

» Soil carbon sequestration
» Crop residue returning
* Increase plant biomass



Water management to reduce CH, emission
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Crop residue management to reduce CH, emission
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N,O mitigation options

N e Optimized N application
+ Increasing N splitting frequency
Applying N deep placement

Reducing N rate under soil N test

e Enhanced efficiency N fertilizers
Controlled-release N fertilizer (CRF)
Nitrification inhibitor (NI)

Urease inhibitor (Ul)

Resin-based CRF Inhibitors



SOC sequestration In croplands

Organic fertilizer

OF + CF

Chemical fertilizer

Soil organic carbon content, g/kg



Conventional mitigation options (51)

® +SOC: crop residue return (44% to 82%) Provincial reduction 2~43%
® -CH, : Intermittent irrigation Unable to achieve carbon neutral

® Optimal N use: N rate -15% (-N,O and -CO,)
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Low SOC sequestration efficient under straw application

Paddy field: 3-10% Upland field: 1-9%
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Trade-off between SOC and CH, emissions in paddy

Proportion of straw C ends in CH,
3-11%
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« 1kg CH,=27 kg CO,in GWP
« Straw-induced CH, emission (kg CO,-e) = 9.8 times SOC increase (CO,-e)



Effects of straw on N,O emissions

(1) Rice field: -17%
MBN +38.4%
DOC +15.4%
Denitrification(N,O—N.)

(2) Upland field: +22%

SWC +14%
DOC +24.2%

Xia et al., 2018, GCB



Effect of biochar application

Xia et al., 2023, Nature Food



Conventional options + Biochar (52)

® +SOC: Biochar application (use 82% straw)
® -CH,: Intermittent irrigation, biochar
® Optimal N use: N rate -15% (-N,O and -CO,)

Provincial reduction 40~80%
Unable to achieve carbon neutral
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Energy substitution effect of biochar production

Using by-products (bio-oil and bio-gas) for clean energy prodution

Jouhara et al., 2017, Thermal Science and Engineering Progres Gao et al., 2017, Energy



Energy substitution effect of biochar production

Using by-products (bio-oil and bio-gas) for clean energy prodution

https://bioenergy-concept.com/pyrolysis/



Conventional options + Biochar + Energy substitution (S3)

® +SOC: Biochar application (use 72% straw)

® Energy substitution: -CO, Provincial reduction 95~118%
® -CH,: Intermittent irrigation, biochar Achieved carbon neutral

® Optimal N use: N rate -15% (-N,O and -CO,)
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Summary

® Staple crop production is an important and steady sector
of GHG emissions, with CH, from rice paddy the dominant
source.

® Conventional mitigation options can largely reduce GHG
emissions, but not sufficient to achieve carbon neutrality,
due to the trade-off relationship between GHG emissions
and SOC sequestration resulting from crop straw return.

emissions (Tg CO, yr'!)

® Straw-derived biochar application coupled with energy
capture has the potential to achieve carbon neutrality for
staple food production in China.
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® Constrains include: technology to capture and store
energy, market mechanisms to adopt low carbon practices
in agriculture, MRV methodologies.
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