Technical Challenges to Achieving Safe and Effective Human Germline/Heritable based on Data from Somatic Cell Editing

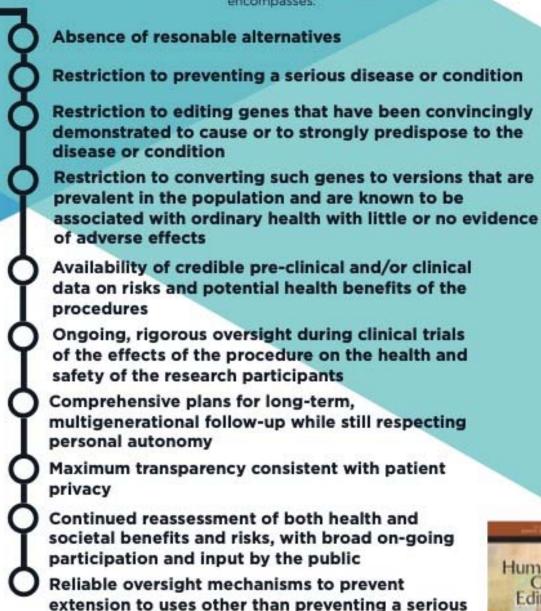
Matthew Porteus MD PhD

Department of Pediatrics

Divisions of Stem Cell Transplantation and Regenerative Medicine, Hematology/Oncology and Human Gene Therapy

Institute of Stem Cell Biology and Regenerative Medicine Maternal Child Health Research Institute

Stanford University


mporteus@stanford.edu

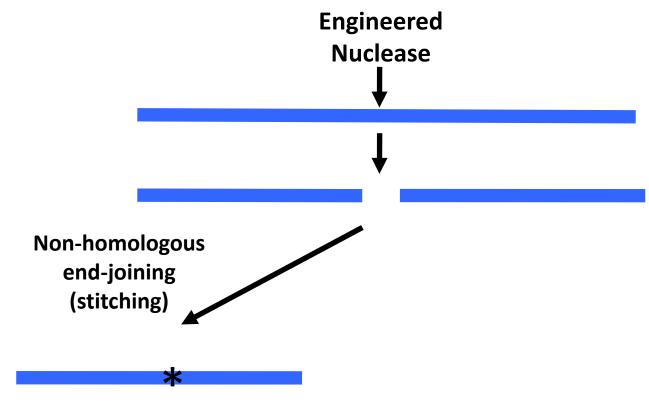
13 August 2019

Strict Criteria Proposed by 2017 Report

Criteria for heritable germline editing

The committee recommends that clinical trials using heritable genome editing should be permitted only within a robust and effective regulatory framework that encompasses:

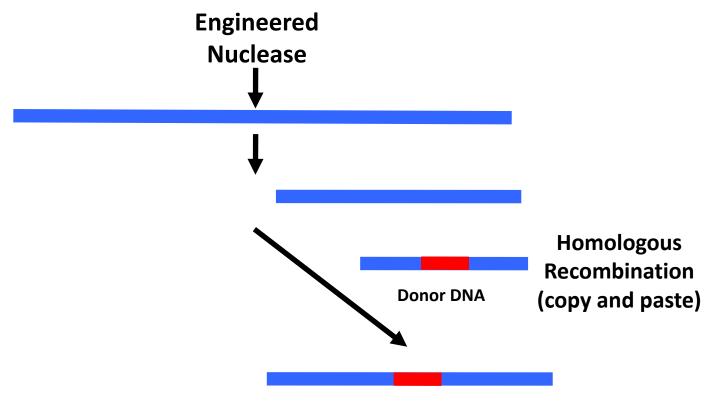
disease or condition


Proposed Technical Criteria for Heritable Genome Editing

- Absence of alternatives (e.g IVF with PGD)
 - Since efficiency is poor, need research to make it more efficient
 - Using editing to increase the potential number of implantable embryos is not a compelling rationale
 - 1. Additional manipulation of embryo likely will make it less likely to successfully generate a viable pregnancy
 - 2. Expose at least 50% of embryos to un-necessary engineering/manipulation
 - State supported, a la the UK health system, with a defined list of diseases
 - 1. Prevent suffering
 - 2. Side effect of being economically cost effective
- Restriction to serious disease or condition and to genes with clearly proven causality
- Restriction to editing to sequences that are common and known to be healthy in the human population
 - Revert pathologic sequences to normal sequences
 - Don't modify healthy sequences to bespoke sequences (humility)
 - Just because there are a few people in the world who have a certain gene sequence, does NOT mean that it would be broadly healthy (the problem of what is missing)
- Reliable oversight mechanism to prevent extension to uses other than treating serious diseases (not needed if bullet point 3 is adopted)

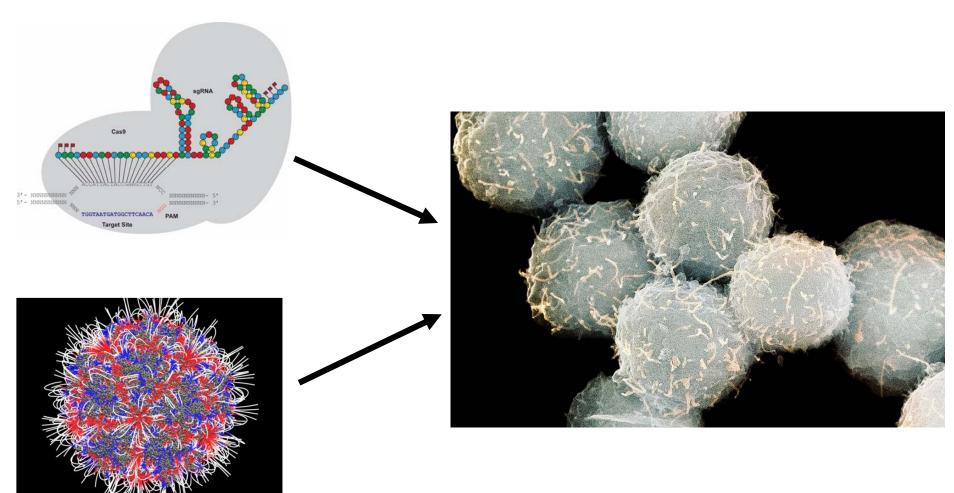
Issues Related to these Technical Criteria

- 1. Specificity
- 2. Chimerism
- 3. Generating only common and healthy sequences
- 4. Potential solutions by not editing zygotes


Heritable NHEJ based editing should be prohibited because it generates sequences that are neither common nor known to be healthy in the human population

Precise Spatial Modification

Method to Break Things


Only HDR/HR Based Editing Can Reliably Generate Sequences that are Known to be Common and Healthy in the Human Population

Precise Spatial AND Nucleotide Modification of Genome

Method to Make Single Nucleotide Changes

Gene Correction using Cas9/gRNA RNP and a nonintegrating virus (AAV6)

Recombinant Adeno-Associated Virus (AAV6) (non-integrating)

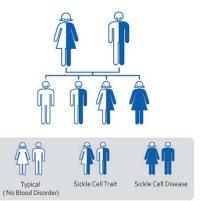
Sickle Cell Disease is Caused by a Single Nucleotide Variant in the *HBB* Gene

Partial DNA Sequence CCT GAG GAG
of Beta Globin Gene: GGA CTC CTC

Partial RNA Sequence: CCU GAG GAG

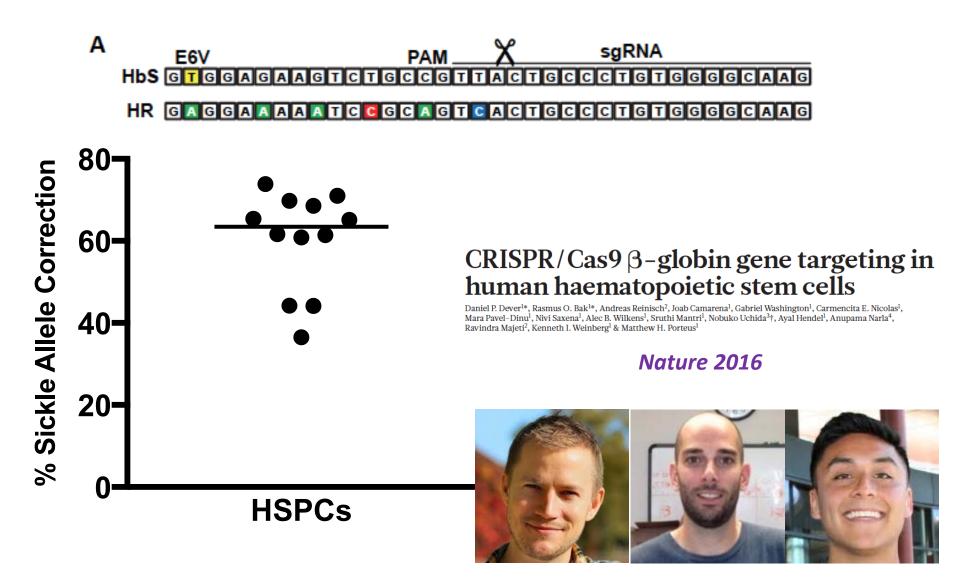
Partial Amino Acid Sequence for Beta Globin: Pro — Glu — Glu

Hemoglobin Molecule:

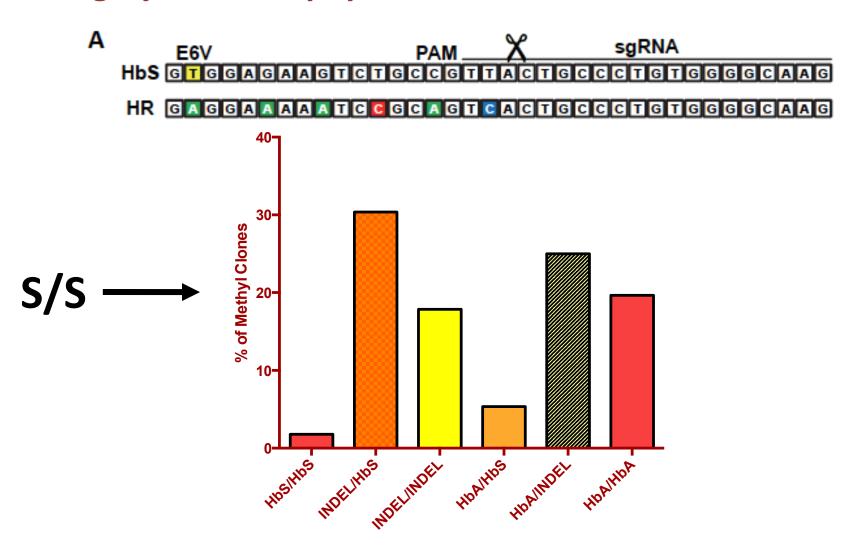


Hgb S Sickle (E6V)

CCT GTG GAG GGA CAC CTC CCU GUG GAG



Median Lifespan


United States: mid-40s (though taking medicine for pain >3 times/week) (neurocognitive damage starts occurring in first years of life)

Africa: 5-8 years old

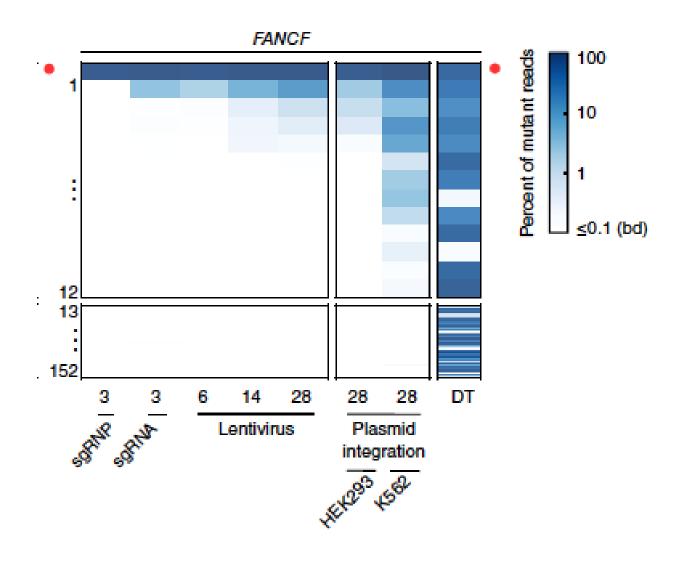
Editing Sickle Variant in CD34+ Somatic Hematopoietic Stem and Progenitor from Six Sickle Cell Disease Patients

- 1. Silent changes are not present in human population
- 2. Even so, 70% of cells have at least one allele with a non-natural sequence (INDEL)
- 3. Highly chimeric population

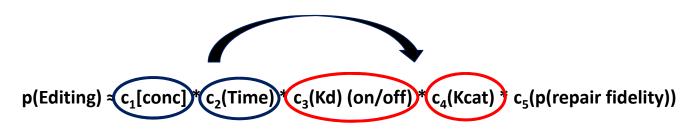
What about specificity?

Qualitative Biochemical Understanding of Nuclease Specificity

p(Editing)
$$\approx c_1[conc] * c_2(Time) * c_3(Kd) (on/off) * c_4(Kcat) * c_5(p(repair fidelity))$$


Kd ≈ (guideRNA binding energy)(Cas9-DNA binding energy)

Improvement in specificity by using RNP Delivery

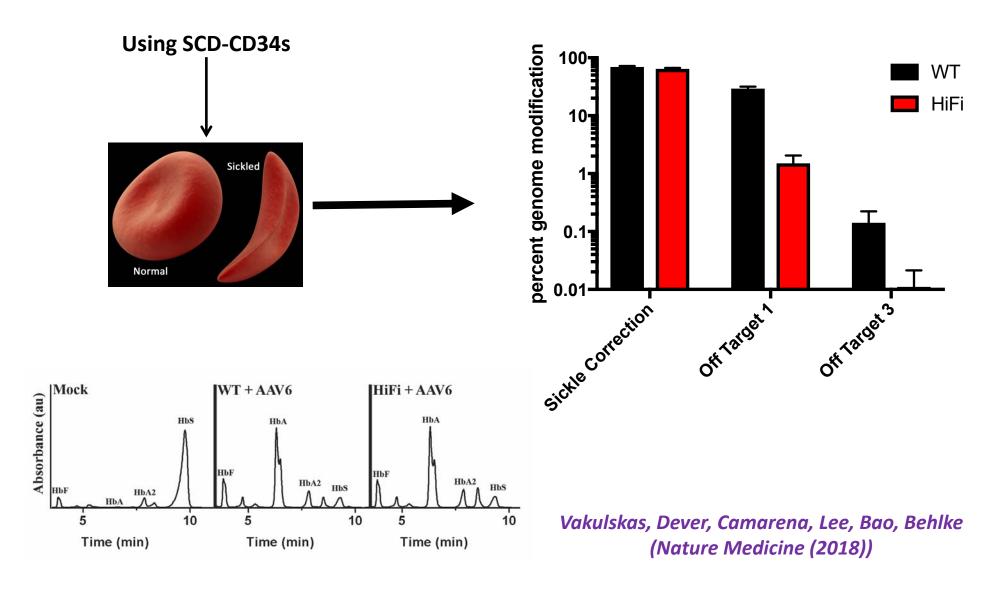

Mapping the genomic landscape of CRISPR-Cas9 cleavage

Peter Cameron^{1,4}, Chris K Fuller^{1,4}, Paul D Donohoue¹, Brittnee N Jones^{1,3}, Matthew S Thompson¹, Matthew M Carter¹, Scott Gradia¹, Bastien Vidal¹, Elizabeth Garner¹, Euan M Slorach¹, Elaine Lau¹, Lynda M Banh¹, Alexandra M Lied¹, Leslie S Edwards¹, Alexander H Settle¹, Daniel Capurso¹, Victor Llaca², Stéphane Deschamps², Mark Cigan^{2,3}, Joshua K Young² & Andrew P May^{1,3}

Nature Methods (2017)

Qualitative Biochemical Understanding of Nuclease Specificity

Kd ≈ (guideRNA binding energy)(Cas9-DNA binding energy)



A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells

Christopher A. Vakulskas ^{1,7}, Daniel P. Dever^{2,7}, Garrett R. Rettig ¹, Rolf Turk ¹, Ashley M. Jacobi ¹, Michael A. Collingwood ¹, Nicole M. Bode ¹, Matthew S. McNeill Shuqi Yan¹, Joab Camarena², Ciaran M. Lee ³, So Hyun Park Volker Wiebking ², Rasmus O. Bak ^{4,5}, Natalia Gomez-Ospina ², Mara Pavel-Dinu, Wenchao Sun ⁶, Gang Bao, Matthew H. Porteus and Mark A. Behlke ¹

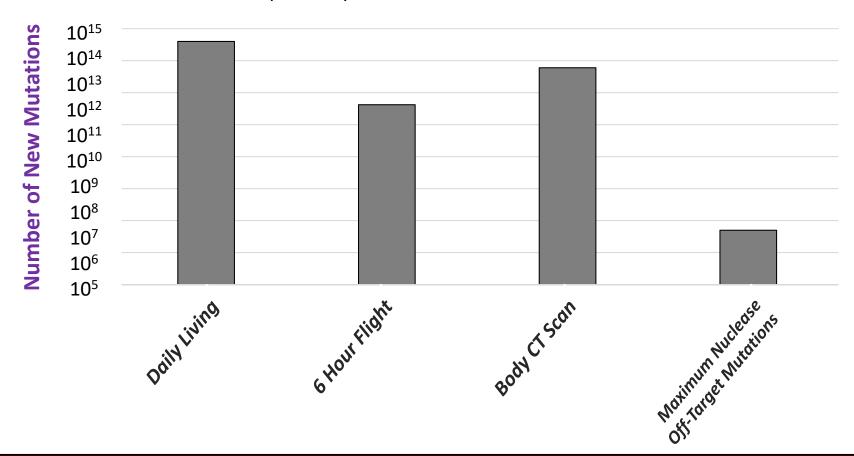
NATURE MEDICINE | VOL 24 | AUGUST 2018 | 1216-1224 | www.nature.com/naturemedicine

IDT HiFi SpCas9 (R691A) Mediates High Level Sickle Gene Correction while Reducing Off-Target INDELs by > 1-log in Sickle Cell Patient Derived CD34+ HSPCs

Specificity of RNP genome editing is more specific than cellular life in terms of new mutations generated (by >2000-4000 fold)

RNP Editing with HiFi Cas9: <1 mutation in 1% of cells

Life: 20-40 mutations in 100% of cells

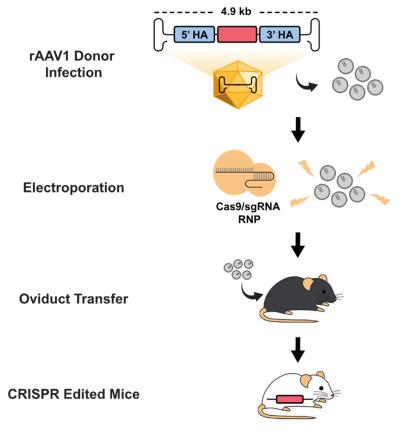

Putting Potential Nuclease Toxicity in Context: Natural and Acquired Genetic Variation

Tremendous genetic diversity among humans to begin with:

Baseline Variation Per Person: 2.4 million SNVs, 500-600K In/Dels (355 Exonic, 91 Frameshift), ~3000 structural variants (i.e. Dewey et al 2014 JAMA)

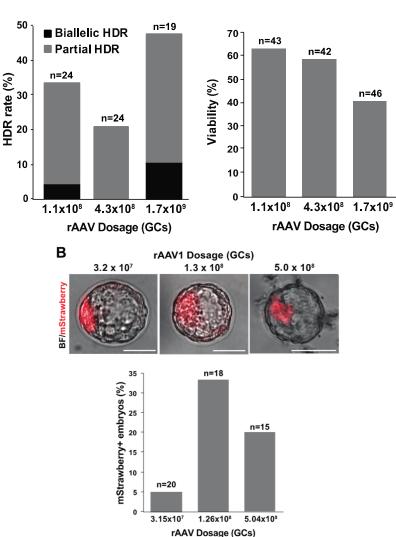
Tremendous ongoing genetic diversity within each person

~20 new mutations per every cell division

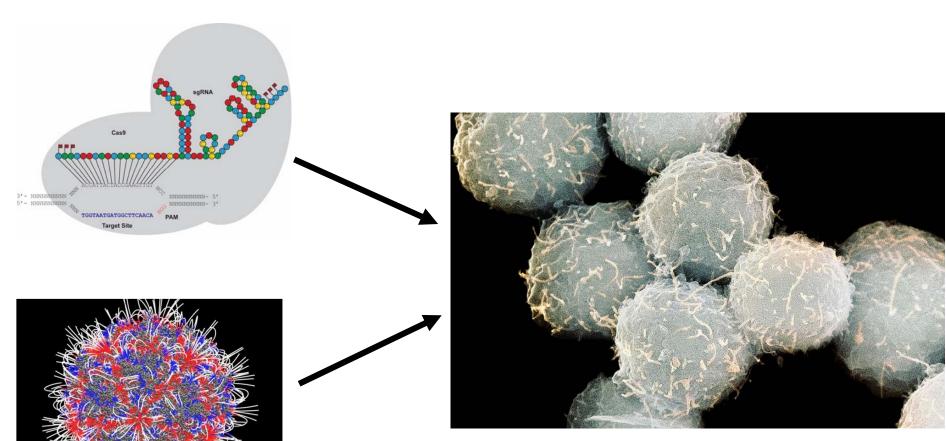


Assumes high fidelity of DSB Repair: 90% (9 out of 10 breaks are repaired precisely)

RNP/AAV6 System is Highly Efficient in Mouse Zygotes


CRISPR-READI: Efficient Generation of Knockin Mice by CRISPR RNP Electroporation and AAV Donor

Infection


Chen et al., 2019, Cell Reports *27*, 3780–3789 June 25, 2019 © 2019

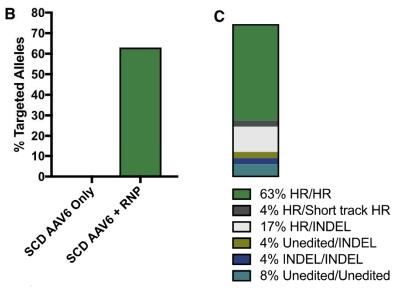
https://doi.org/10.1016/j.celrep.2019.05.103

Somatic Cells/Organs 4. Editing of Stem Cells to give Rise (ex vivo or in vivo) (primary or IPS derived) to Germ Cells for Heritable Editing Germ Cells/Organs Testis SSC IVF (in vivo) (ex vivo) **Ovary** Eggs Zygote **Blastocyst** (in vivo) (ex vivo) (one cell) (ex vivo) (ex vivo) **Embryo** (in utero) (inadvertent germline editing) **IPS derived PGSCs** IPS cells and PGCs (ex vivo) (ex vivo)

Targeted Gene Integration using RNP/AAV6 System in Human Pluripotent Cells

Recombinant Adeno-Associated Virus (AAV6) (non-integrating)

Cell Stem Cell


Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination

Martin, Ikeda, Cromer et al Cell Stem Cell (2019)

Resource

Efficient Targeted Integration and Single Nucleotide Correction (>40%)

Editing of Mouse Spermatogonial Stem Cells (SSCs)

OPEN ACCESS Freely available online

Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

PLoS One (2014)

Danielle A. Fanslow¹, Stacey E. Wirt², Jenny C. Barker³, Jon P. Connelly³, Matthew H. Porteus²*, Christina Tenenhaus Dann¹*

> Cell Research (2015) 25:67-79. © 2015 IBCB, SIBS, CAS All rights reserved 1001-0602/15 \$ 32.00 www.nature.com/cr

ORIGINAL ARTICLE

Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells

Yuxuan Wu^{1,2,*}, Hai Zhou^{1,2,3,*}, Xiaoying Fan^{4,*}, Ying Zhang^{2,5,*}, Man Zhang^{1,2,*}, Yinghua Wang^{1,2}, Zhenfei Xie^{1,2}, Meizhu Bai^{1,2,6}, Qi Yin^{1,2}, Dan Liang^{1,2}, Wei Tang⁷, Jiaoyang Liao^{1,2}, Chikai Zhou^{1,2}, Wujuan Liu^{1,2}, Ping Zhu⁴, Hongshan Guo⁴, Hong Pan^{1,2}, Chunlian Wu³, Huijuan Shi⁸, Ligang Wu^{2,5}, Fuchou Tang⁴, Jinsong Li^{1,2,6}

Human Reproduction Update, Vol.22, No.5 pp. 561-573, 2016

Advanced Access publication on May 30, 2016 doi:10.1093/humupd/dmw017

reproduction update

Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases

Callista L. Mulder[†], Yi Zheng[†], Sabrina Z. Jan, Robert B. Struijk, Sjoerd Repping, Geert Hamer*, and Ans M.M. van Pelt

Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

Summary/Personal Conclusions

- 1. There are only a few examples in which heritable/germline editing prevents a child being born with a serious disease that could not be prevented by IVF with PGD.
 - Using zygote editing to create "more" such zygotes is not a justification to cross what remains an important line when considering the global human population with diverse, robust, meaningful, and differing belief systems.
- 2. Restricting edits to sequences that are known to be common and healthy in the human population protects from hubris and from leakage to applications beyond the prevention of disease.
 - Does not fundamentally alter human evolution/genetics
 - Could generate a list of acceptable sequences that permissible to edit to
- 3. Quantitative, public disclosures/international review about efficacy, specificity, and chimerism should be required before any attempt at creating a pregnancy.
- 4. Editing to sequences that are common and healthy in the human population in a nonchimeric way without creating sequences that are novel remains technically challenging.
- 5. Advances in stem cell biology, germ cell biology, and somatic cell editing, however, may provide solutions to the technical challenges of #4 and regulations should be put into place anticipating that the technical challenges will be solved.
- 6. Societal, ethical, and governance issues remain just as, if not more, important than the technical issues.