

Innovative Plant Breeding for Climate-Resilience with Induced Genetic Diversity A GLOBAL CONTEXT

The Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture

Shoba Sivasankar, Section Head Plant Breeding and Genetics Jun 2023

Plant Breeding & Genetics at the Joint FAO / IAEA Center

Demand-driven research innovations, applications

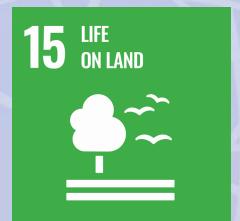
Develop improved, climate-change adapted, crop varieties for food and nutrition security, reduced poverty through nuclear and related biotechnologies

- Induced genetic variation
- Genomics
- Precision phenotyping (selection)
- Speed-breeding technologies
- Seed systems for farmers' access to new varieties

Delivered though: Coord

Coordinated Research Projects and Technical Cooperation (TC) Projects

Contributing to:



CURRENT TC PROJECTS at PBG: National 53, Regional 11

PBG Coordinated Research Projects VPC FGTU Disease Resistance Pulses BINA **NIAB** D22006 D24014 D20003 D20004 D24015 D23032

INDUCED GENETIC DIVERSITY FOR CROP IMPROVEMENT

Local, National IMPACT

Food & Nutritional Security, Farmers' Income

Increased crop production

Induced Genetic Diversity

Mutagens

- Gamma ray
- Electron beam
- Heavy ion beam
- X-ray
- Cosmic rays
- EMS

Plant species

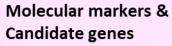
- Food, feed, cash
- Seed propagated
- Vegetative
- Perennial

Phenomics & HTP Genomics & Speed Selection

Breeding

In the lab

- Plate-based assays
- Biochemistry
- Microscopy


In the greenhouse

- Seedling assays
- High-throughput
- Controlled environment

In the field

- Environment classification
- Testing hot-spots
- Managed-stress environments
- Multi-environment tests

Gene-to-phenotype associations;

- Identification
- Validation
- Assay development

Genomic Selection Gene editing

Doubled haploidy; Rapid cycling; **Shuttle breeding**

Variety Release & Farmer Adoption

Farmer adoption

- Participatory selection
- Multi-stakeholder platform
- Seed multiplication
- Seed certification
- Seed distribution

Records

Mutant Variety Database

Induced Genetic Diversity – Mutagen Source

Newer mutagen sources: ion beam, electron beam, cosmic rays

Can cosmic radiation and microgravity trigger mutations for better climate-change adaptation?

Effect on **DNA structural variants** with different mutagen sources.

Improvement of Seed Crops for Climate Resilience

- Improvement of food, feed and cash crops
- Yield enhancement, yield stability under climate change, produce quality

Drought tolerant groundnut in Sudan

Heat tolerant cotton in Pakistan

Improvement of Seed Crops – Insect Pest Resistance

Induced genetic diversity for pest resistance Non-Bt alternative where necessary

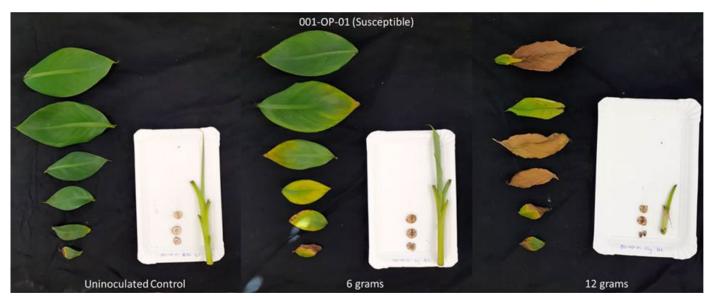
- Resistance to Fall Army Worm in Maize
- Resistance to chickpea pod borer, Helicoverpa armigera
- Resistance to cowpea pod borer, Maruca vitrata

Photo: CIMMYT

Photo: Thudi M, ICRISAT

Photo: Dhanasekhar P, BARC

Improvement of Vegetative and Perennial Crops


- Improvement of vegetative crops and perennial crops has been traditionally challenging
- Existing genetic variation very narrow
- Induction requires the use of tissue culture, micropropagation

Cassava, potato, sweet potato, fruit trees....

Improvement of Vegetative Crops – Disease Resistance

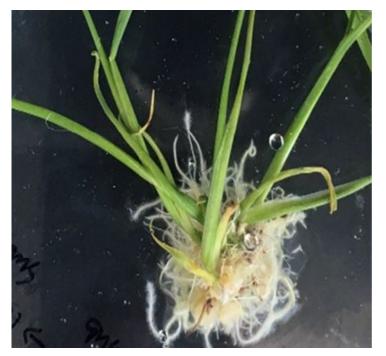
Developing banana varieties resistant to the **Fusarium Wilt foc TR4**, a devastating disease

Screening for resistance under controlled greenhouse conditions

Field testing for resistance to TR4

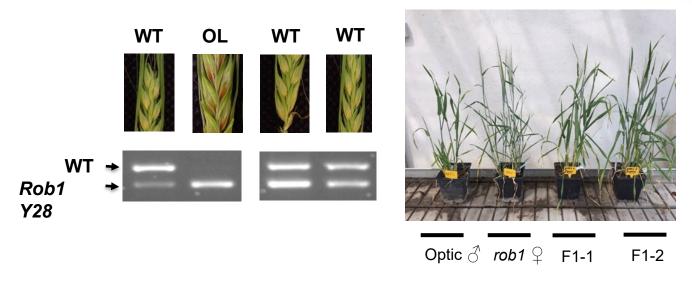
Improvement of Perennial Tree Crops – Disease Resistance

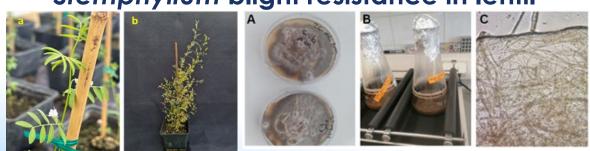
Coffee mutagenesis, variant discovery – against the **Leaf Rust disease** single-cell mutagenesis, exome capture



Speed Breeding

- ☐ Shorten time for variety development
 - Doubled haploidy (Rice)
 - Rapid generation advancement (RGA)
- ☐ 5 generations of lentil in a year with RGA at FAO / IAEA greenhouses
- Rice variety in MS from irradiation to release – 5 years





Functional Genomics for Trait Utilization (FGTU)

Marker development for barley grain digestibility

Stemphylium blight resistance in lentil

Striga resistance in sorghum

Capacity Building

- Fellowships, Internships, Group Training at national and regional levels
- Protocols, Kits

DNA extraction, PCR

Coffee Exome Capture kit

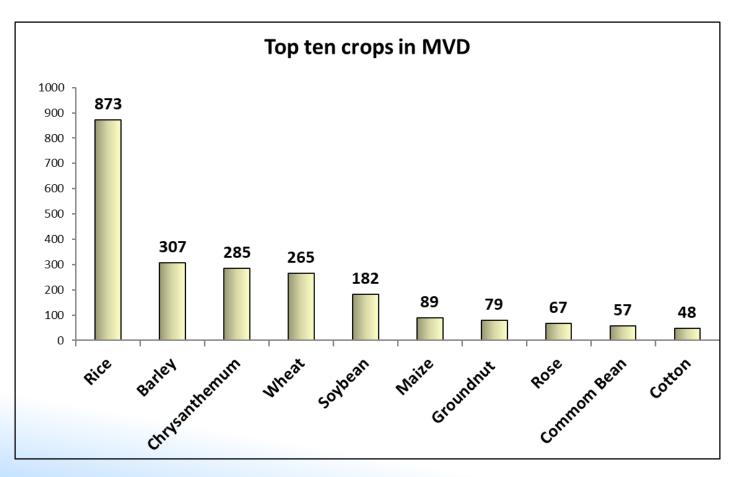
Recent Success Stories in Crop Improvement

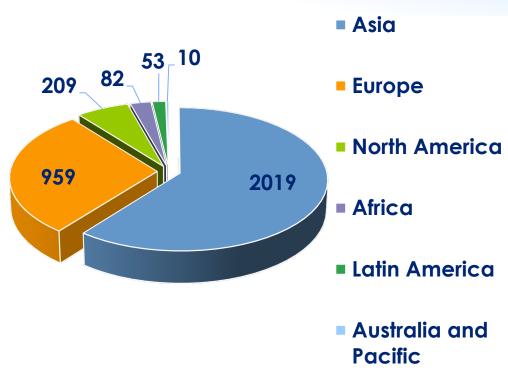
31 May 2022

Tackling Cassava Brown Streak Disease in Uganda with Nuclear Techniques

1 June 2020

Drought-tolerant crops: IAEA and FAO help Zambia improve production and farmers' income




5 September 2019

Nuclear Techniques Help Develop New Sorghum Lines Resistant to the Parasitic Weed Striga

FAO / IAEA Mutant Variety Database (MVD)

~3400 released varieties across 72 countries and 238 species

