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Data custodians need a privacy “filter”
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Share insights about groups

Desired Insight
The median weekday drop-off frequency on 59th Street
during morning rush hour is 145

Protect individuals

Privacy Violation
Customer x456 traveled from LGA to
59th St and 7th Ave, arriving June 1 at 8:30am



Data custodians need a privacy “filter”
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e De-identified data

> Re-identification attack

A re-identification attacks uses de-identified data, in
combination with external information sources, to
identify individuals and infer their sensitive properties.
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Privacy violation




Data custodians need a privacy “filter”
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Data custodians need a privacy “filter”
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e Sharing through a query interface
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Data custodians need a privacy “filter”

cust PU DO pass PU DO
ID time time count loc

Sensitive location records

TT
1

D

1
11
11
1
1
11
11
1
11
1
11
1

e Sharing synthetic tables

> Reconstruction attack

A reconstruction attack uses a set of aggregate query
answers to reconstruct the set of hidden input records.
> Membership inference attack

A membership inference attack occurs when repeated
access to predictions from a machine learning

model reveals sensitive properties of individuals
present in the training data.
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Data custodians need a reliable privacy “filter”
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Differential privacy
a standard for computations on data

that limits the personal information that could be revealed by the output.




Differential privacy

a standard for computations on data
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Sensitive location records

that limits the personal information that could be revealed by the output.

New tech is here

DP output
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 Every individual protected.

 Every attribute protected.
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The differential privacy guarantee

The guarantee holds, regardless o
of compute power or knowledge

of potential attacker. * Ahead of regulation
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Resists current and future attacks



Differential privacy

a standard for computations on data

that limits the personal information that could be revealed by the output.
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First key difference:
randomness

Differentially Private (DP)
Computation

Sensitive location records

Controlled disclosure
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Some “noise”
In output

DP analytics
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Pickup frequency by taxi zone
New York City taxi/passenger data; 3.17 million records

Original data Differentially private, epsilon = 1.0
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Differential privacy
a standard for computations on data

that limits the personal information that could be revealed by the output.
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Managing cumulative privacy loss
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Privacy Accounting — Mobility data
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Differential privacy gives
Data custodians a reliable, metered privacy “filter”
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Protect individuals
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Try our platform

Free trial available; open source soon!
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