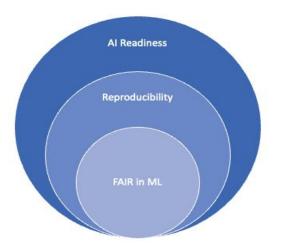
FARR:

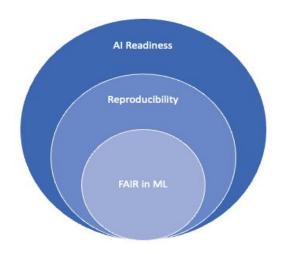
FAIR in ML, AI Readiness, & Reproducibility Research Coordination Network

BRDI April 20, 2023

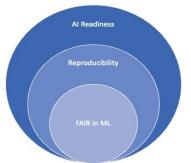
EOI



This work is supported through the NSF award #2226453.


Motivation

• If 80% of time spent with data is wrangling, can FAIR principles increase efficiency of people and machines?

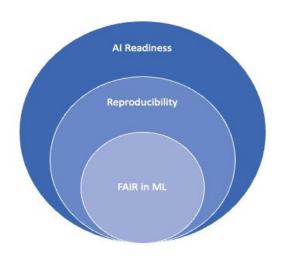

- What does it mean for a repository or an organization to be AI ready?
- What roles can repositories play in Al readiness?
 What are community practices in Al reproducibility?
 - What are the gap's in current knowledge?

Al Readiness

Literature Review of 'Al Readiness'

- Term used in computer science, healthcare, business, systems engineering
- Granularity varies: country, organizations/companies, data
- Definition examples
 - Quantity and quality of Al-related research in a country (Vuong)
 - Preparedness of organizations to implement change involving applications and technology related to AI (Najdawi)
 - Organization's abilities to deploy and use AI in ways that add value to the organization (Holmström's AI Readiness framework)
 - Al readiness process comprises a set of strategic actions to be performed prior to Al adoption (Issa)
 - Data that can support Al solutions should be known, understood, available, fit for purpose, secure (McKinsey's 5 Steps to Al ready data)

Al Readiness Frameworks


Table 2: Extended TOE framework for AI-Readiness at Business

Readiness Dimensions	Main Categories	Sub-Categories	
Technology Readiness	Relative advantage		
	Compatibility	Business process*, Business case*	
Organizational Readiness	Culture *	Top management support, change Management*, Innovative Culture*	
	Organizational Size		
	Resources	Budget*, employees*, data* (availability, protection and quality)	
	Organizational Structure*		
Environmental Readiness	Competitive pressure		
	Government regulatory issues	Employees'council, General Data Protection Regulation (GDPR)*	
	Industry requirements *	No.	
	Customer readiness *		

Najdawi, Anas. (2020). Assessing Al Readiness Across Organizations: The Case of UAE. 1-5. https://doi.org/10.1109/ICCCNT49239.2020.9225386; Holmström, J. (2022). From Al to digital transformation: The Al readiness framework. *Business Horizons*, 65(3), 329–339. https://doi.org/10.1016/j.bushor.2021.03.006

Al Reproducibility

Al Results Can Vary (Software Bug)

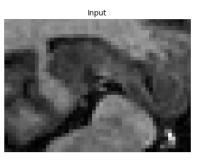
Processing Unit:Software Environment	0	1	2	3	4
NVIDIA A40:tensorflow_22.03	0.86584	0.86584	0.86584	0.86584	0.86584
NVIDIA A100-40GB:tensorflow_22.03	0.86580	0.86580	0.86580	0.86580	0.86580
Tesla V100-16GB:tensorflow_22.03	0.85203	0.85203	0.85203	0.85203	0.85203
NVIDIA A40:tensorflow_22.06	0.86584	0.86584	0.86584	0.86584	0.86584
NVIDIA A100-40GB:tensorflow_22.06	0.86580	0.86580	0.86580	0.86580	0.86580
Tesla V100-16GB:tensorflow_22.06	0.85203	0.85203	0.85203	0.85203	0.85203
NVIDIA A40:tensorflow_2.8.0-gpu	0.86571	0.86555	0.85680	0.85927	0.86147
NVIDIA A100-40GB:tensorflow_2.8.0-gpu	0.86511	0.84516	0.86360	0.85895	0.86479
Tesla V100-32GB:tensorflow_2.8.0-gpu	0.85983	0.78835	0.85764	0.86031	0.86908
NVIDIA A40:tensorflow_2.9.1-gpu	0.83631	0.86287	0.83891	0.85724	0.85276
NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.85979	0.86619	0.83156	0.86412	0.84564
Tesla V100-16GB:tensorflow_2.9.1-gpu	0.84447	0.85320	0.85996	0.86511	0.86779
NVIDIA A40:tensorflow_2.9.1-gpu-cuda11.3-cudnn8.2	0.86184	0.86184	0.86184	0.86184	0.86184
NVIDIA A100-40GB:tensorflow_2.9.1-gpu-cuda11.3-cudnn8.2	0.84631	0.84631	0.84631	0.84631	0.84631

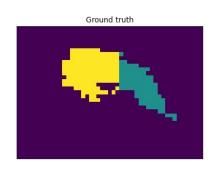
Slide source: Kevin Coakley (SDSC/NTNU)

Tolerance for Erroneous Conclusions: High

Image classification

Find the four-leafed clover →

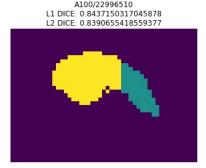

0.8626000285148621 0.8573200106620789 0.8610799908638000 0.86492002 0.8525599837303162 0.8678799867630005 0.8515599966049194 0.86799997 0.8572800159454346 0276374817 0.8664399981498718 0.8625199794769287 0.862119972 0.8642799854278564 0.8643199801445007 0.8637199997901917 826049805 0.8429200053215027 0.8507199883460999 0.8378000259399414 0.8637199997901917 0.8675600290298462 0108718872 9786567688 0.8575999736785889 0.8620799779891968 0290298462 0.8675600290298462 0.8675600290298462 0.8675600290298462 0204086304 0.8561199903488159 0.8648800253868103 0.8633199930191040 0 862119972 0290298462 0.8675600290298462 0.8675600290298462 0.8675600290298462 0.867560029 9830055237 0.8628799915313721 0.8389199972152710 0.8572400212287903 0.852760016 0.8658800125122070 0.8652399778366089 0.8632799983024597 0.84384000 0.8557199835777283 0.8493199944496155 0012779236 0.8619599938392639 0214385986 0.8543199896812439 0.8555999994277954 0.8573200106620789 0.8661999702453613 0.8315600156784058 0.8641200065612793 0.8642399907112122 9716758728 0.8552399873733521 0.86268001 0.8166800141334534 0.8648800253868103 0.85868000 0.8500400185585022 0.8637599945068359 0.8516399860382080 0199508667 0.86103999 0.8689600229263306 0.8511599898338318 0.85535997 0.8640800118446350



Slide source: Kevin Coakley (SDSC/NTNU)

Tolerance for Erroneous Conclusions: Low

Running nnUNet with Medical Imaging



What amount of error is tolerable?

Need to quantify the variance

Slide source: Kevin Coakley (SDSC/NTNU)

FARR Goals and Activities

We welcome individual researchers, institutions/organizations, CI providers, repositories/facilities, and networks of facilities in Computer Science, Geosciences, and the 'Research Data' Community. FARR provides a neutral and novel meeting place for bridging multiple networks.

- Building communities to
 - promote better practices for AI
 - harness community efforts
 - improve efficiency and reproducibility
 - stimulate and enhance new research

- Activities will include
 - workshops
 - assessing community needs
 - fostering new collaborations (proposals)
 - setting research agendas
 - community-led reports

Incorporating EarthCube's sustainability lessons from the beginning.

FARR Team

PI, Christine Kirkpatrick

Co-PI, Karen Stocks

Co-PI, Yuhan (Douglas) Rao

Co-PI, Daniel S. Katz

Project Director, Lynne Schreiber

Sr. Personnel, Kevin Coakley

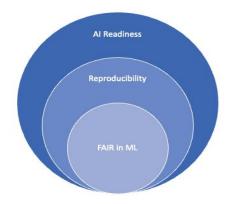
Project Manager, Julie Christopher

Communications, Kim Mann Bruch

EARTH IMAGERY FOR IMPACT

Early Signals

- (AI) Reproducibility is complex and resource intensive
 - Must prioritize key aspects to document
 - Lack of awareness of issue
 - Excellent library personnel who want to help
 - Papers >3 years old difficult to reproduce
 - Even if containers are provided
 - Suggests shifting priorities for curation teams


Al Readiness

- Definition evolving within communities
- The other FAIR Fully AI Ready
 - How do I get there?
 - Are we there yet?
 - How will I know when I'm FAIR?

Listening Tour

- Need for onramps:
 - "Where do I start with AI?"
 - How do I choose a GPU?

Thank You

For more info, contact us at community@farr-rcn.org
To join our mailing list, visit http://farr-rcn.org