
Science Policy Research Report: Funding Team Science

Jonathon Cummings
Professor of Management
Duke University

Team Science

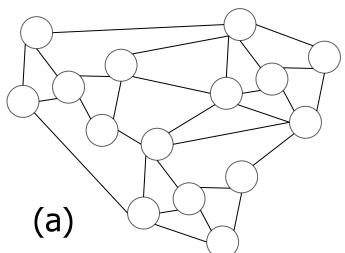
 Collaboration of two or more scientists working interdependently towards a common research goal

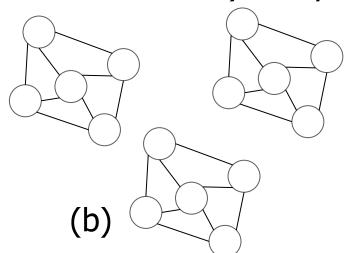
"...while the increasing size of team-based research projects brings greater scientific expertise and more advanced instrumentation to a research question, it also increases the time required for communication and coordination of work (pg. 1)."

-- Enhancing the Effectiveness of Team Science (National Academies Press, 2015)

Role of Funding Agencies

- Funding agencies (public and private) play a critical role in team science
- Program managers want to allocate resources to optimize complex problem solving, new research discoveries, and technological innovation
- Resource allocation includes determining which teams should get funded and how much funding they should get





Team Science Thought Question

As a program manager, if you had a budget of US\$1.5M, would you prefer to fund: (a) one larger team of 15 scientists (\$1.5M for entire team) or (b) three smaller teams of five scientists (\$500,000 for each team)? Why?

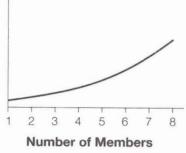
Note: the proposed science for the one 15-member team is <u>identical</u> to the proposed science across the three 5-member teams

Evaluating Teams

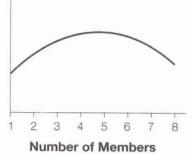
- <u>Team Process</u> (i.e., how the team works together)
 - Satisfaction
 - Quality of Experience
 - Cohesion
 - Perceived Support
 - Rate of Participation
- Team Performance (i.e., what the team produces)
 - Research Papers
 - Journal Publications
 - Publication Impact
 - Patents Granted
 - Patent Impact

Trade-Offs of Team Size

Process Losses


- Motivation
 - (e.g., free-riding or social loafing)
- Communication
 - (e.g., keeping up with all members)
- Coordination
 - (e.g., integrating different tasks)

Performance Gains


- Effort
 - (e.g., more people working on task)
- Expertise
 - (e.g., solve problems more quickly)
- Division of Labor
 - (e.g., efficiently divide up tasks)

(b) Process losses

(c) Actual productivity

Number of Member jonathon.cummings@duke.edu

Literature Review on Team Size

(organizational behavior, psychology, sociology, economics, science studies, research policy, computer science, social science & medicine)

Science Teams

- Academic Research Teams
- Corporate R&D Teams
- Inventor Teams

Non-Science Teams

- Software Development Teams
- Corporate Product Teams
- Student Project Teams

Excluded

- Nominal Groups
- Multi-team Systems
- Research Centers
- Scientific Networks
- Online Communities
- Crowdsourcing

Exploring Team Complexity

Interdisciplinary

 Disciplinary differences in language and norms about the research process need to be resolved

Multi-Institutional

Geographic dispersion and cultural differences across institutions need to be resolved

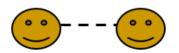
Interdependent Sub-Tasks

 Task differences involving various resources, tools, applications, databases, experiments, and other elements of the science need to be resolved

Robust and Reliable Evidence

- (a) strong causal inference (e.g., laboratory experiments and field experiments)
- (b) moderate causal inference (e.g., longitudinal studies with appropriate controls)
- (c) weak causal inference (e.g., cross-sectional surveys and observational studies)

Threats to the Evidence (1)


(1) Sample selection bias

Form team -> Apply for Grant -> Receive Grant -> Do Research -> Write Paper -> [Publish Paper]

An illustration:

Did not work together
Did not publish together
58% of pairs on projects

Worked together
Did not publish together
18% of pairs on projects

Worked together
Published together
24% of pairs on projects

(Cummings & Kiesler, 2008)

Threats to the Evidence (2)

(2) Common data bias

e.g., Web of Science (Thomson Reuters) / Scopus (Elsevier) / Patent Database (USPTO)

Some implications:

- repeating multiple analyses on same data
- limited access (e.g., proprietary/commercial)
- missing data (e.g., non-English publications)
- author disambiguation (e.g., need machine learning)
- interoperability challenges (e.g., match with funding)

Empirical Evidence on Team Size

• Team Process (Primarily Non-Science Teams)

- Satisfaction (e.g., Hackman & Vidmar, 1970)
- Quality of Experience (e.g., Aube, Rousseau, & Tremblay, 2011)
- Cohesion (e.g., Hoegl & Proserpio, 2004)
- Perceived Support (e.g., Mueller, 2012)
- Rate of Participation (e.g., Bray, Kerr, & Atkin, 1978)

• Team Performance (Primarily Science Teams)

- Research Papers (e.g., Cummings, et al., 2013)
- Journal Publications (e.g., Wuchty, Jones, & Uzzi, 2007)
- Publication Impact (e.g., Lee, Walsh, & Wang, 2015)
- Patents Granted (e.g., Bercovitz & Feldman, 2011)
- Patent Impact (e.g., Breitzman & Thomas, 2015)

Empirical Evidence on Team Size

- Team Process (Primarily Non-Science Teams)
 - Satisfaction (e.g., Hackman & Vidmar, 1970)
 - Quality of Experience (e.g., Aube, Rousseau, & Tremblay, 2011)
- **(-)** Cohesion (e.g., Hoegl & Proserpio, 2004)
 - Perceived Support (e.g., Mueller, 2012)
 - Rate of Participation (e.g., Bray, Kerr, & Atkin, 1978)
 - Team Performance (Primarily Science Teams)
 - Research Papers (e.g., Cummings, et al., 2013)
 - Journal Publications (e.g., Wuchty, Jones, & Uzzi, 2007)
- (+) Publication Impact (e.g., Lee, Walsh, & Wang, 2015)
 - Patents Granted (e.g., Bercovitz & Feldman, 2011)
 - Patent Impact (e.g., Breitzman & Thomas, 2015)

A puzzle...

Team Complexity

Team Process

- Interdisciplinary (e.g., Lichtenstein et al., 1997)
- Multi-Institutional (e.g., Cummings & Kiesler, 2005; 2007)

Team Performance

- Interdisciplinary
 (e.g., Leahey, Beckman, & Stanko, 2017)
- Multi-Institutional (e.g., Jones, Wuchty, & Uzzi, 2008)

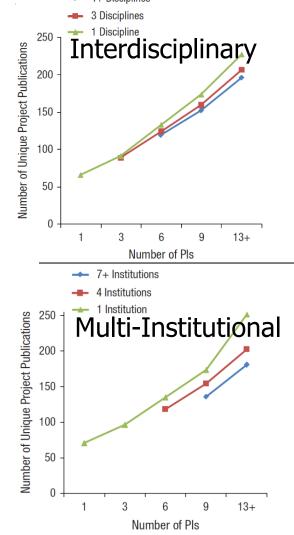
Team Complexity

* Diminishing marginal returns (Cummings et al., 2013)

Team Process

Interdisciplinary (e.g., Lichtenstein et al., 1997)

(-)


 Multi-Institutional (e.g., Cummings & Kiesler, 2005; 2007)

Team Performance

Interdisciplinary
 (e.g., Leahey, Beckman, & Stanko, 2017)

(+)

 Multi-Institutional (e.g., Jones, Wuchty, & Uzzi, 2008)

Policy Recommendations

- (1) Add team size as a factor in the evaluation of proposals
- judge potential performance gains from each member on science team

- (2) Add research integration as a factor in the evaluation of proposals with high team complexity
- judge potential process losses from each component (e.g., discipline, institution, or sub-task) on science team

Policy Implementation

Team Size

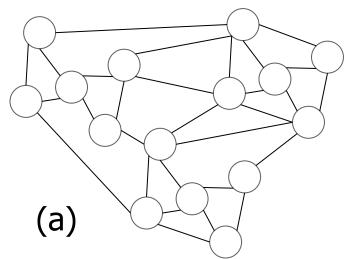
- (1a) require PIs to justify team size in proposals
- (1b) require reviewers to evaluate team size justification in proposals

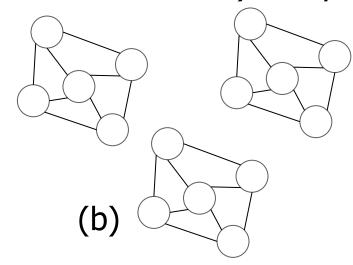
Team Complexity

- (2a) require PIs to include research integration plans in proposals when team complexity is high
- (2b) require reviewers to evaluate research integration plans in proposals when team complexity is high

Future Directions

- Why is team size related to team performance in science teams?
 - Are science teams different in how they experience process losses? (e.g., fewer problems)
 - Do science teams benefit from unique performance gains? (e.g., economies of scale)
 - Is size a signal of science team quality?* (e.g., to grant panelists*, journal editors, and article readers)
 - * Conditional on proposal quality, funded proposals had significantly more principal investigators than unfunded proposals (Cummings & Kiesler, 2008)




Additional Research Questions

- How does team science participation influence individual productivity and impact (e.g., optimal mix of membership in large and small teams)?
- When is funding most useful for large and small science teams (e.g., early-stage research vs late-stage research; newly formed teams vs established teams)?

Thought Question Revisited

As a program manager, if you had a budget of US\$1.5M, would you prefer to fund: (a) one larger team of 15 scientists (\$1.5M for entire team) or (b) three smaller teams of five scientists (\$500,000 for each team)? Why?

Low Complexity

High Complexity

Science Policy Research Report: Funding Team Science

QUESTIONS?

