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Common diseases

Single-gene diseases are distinct entities — patients are clear “outliers”
from the general population

In contrast, common diseases often reflect underlying pathology that is
continuous in nature.

The underlying continuous pathology may be determined by multiple

genetic and environmental factors
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Multifactorial model for disease

Unaffected More vulnerabde, bt Experiencing
nat experisncing active episode
episode of illness of illnass

From Hoang, Cytrynbaum & Scherer, 2017

Numerous genetic and environmental
factors contribute to disease

When total burden of risk factors
(liability) reaches a particular level
(the threshold), disease occurs



Heritability of common diseases

=

Most common human diseases have
moderate to high heritability

~ Total genetic contribution to a disease (heritability) can be
estimated from twin or adoption studies
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Genetic variations and disease

Some mutations have large impact y WL v W
and cause rare “monogenic” diseases

Variants that contribute to common G/T (or C/A) single nucleotide

diseases have milder effects and can polymorphism (SNP)
be common or rare http://www.mdsupport.org/images/geneticsexplained2.jpg

Genetic factors: individual differences
in genome sequence that influence
disease risk

Genetic differences (variants /
polymorphisms) arose from ancestral
mutations.



Genotyping / Sequencing Technologies

Almost all common variants in human genome
now documented by HapMap and 1K Genomes
Projects.

Efficient SNP arrays (e.g. lllumina iScan) cover
nearly all common variants.

Many rare variants undocumented despite large
databases such as ExXAC and gnomAD B

Comprehensive rare variants analysis requires
high-throughput sequencing technologies (e.g.
lllumina NovaSeq)

High-throughput sequencing remains an order of
magnitude more expensive than SNP arrays.



Genome-wide association studies
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cases (n=1,000)
people with heart disease

Variant frequency difference
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controls (n=1,000)
people without heart disease
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https://www.yourgenome.org/stories/genome-wide-association-studies

Stringent significance threshold to
control the number of false
positive associations

Large sample size required to
achieve adequate statistical power
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Example: schizophrenia

30

Biological insights from 108
schizophrenia-associated genetic loci

Schizophrenia Working Group of the Psychiatric Genomics Consortium* Nature 511, 421-427 (24 July 2014)
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Figure 1 | Manhattan plot showing schizophrenia associations. Manhattan  position and the y axis is the significance (-log,, P; 2-tailed) of association

plot of the discovery genome-wide association meta-analysis of 49 case control  derived by logistic regression. The red line shows the genome-wide significance
samples (34,241 cases and 45,604 controls) and 3 family based association level (5 X 10 ®). SNPs in green are in linkage disequilibrium with theindex SNPs
studies (1,235 parent affected-offspring trios). The x axis is chromosomal (diamonds) which represent independent genome-wide significant associations.



Accumulation of GWAS findings
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>10,000 genome-wide significant associations with common diseases / traits
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Current status of GWAS

2018 Quarter 1

Figure source: https://www.ebi.ac.uk/gwas/

>78,000 robust associations with >300 complex diseases and traits



Predicting drug targets

Dopamine D2 receptor gene
(DRD2) associated with
schizophrenia

Dopamine D2 blockade is the
mechanism of current
antipsychotic drugs

LDL-associated genetic variant
near HMIGCR decreases LDL-C
levels by 2.5 mg/dL

Statins inhibit enzyme encoded by
HMGCR and typically decreases
LDL-C levels by 14-70 mg/dL
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Predicting successful drug targets
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The proportion of drug
targets with direct genetic
support increases from
2.0% at the preclinical stage
to 8.2% among targets for
approved drugs
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Implicating biological pathways
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Converging rare & common variants

Table 1 Significant CNV loci from gene-based association test

Putative

Chr. Start End Locus (gene) Status mechanism  CNV test  Direction FWER BH-FDR CAS CON Regional P OR (95% CI)
22 17400000 19750000 22q911.21 Previously implicated NAHR Loss Risk Yes 3.54x 1015 64 1 5.70 x 10-18 67.7 (9.3-492.8)
16 29560000 30110000 16p11.2, praximal Previously implicated NAHR Gain Risk Yes 5.82x 10719 70 7 262 x 10°12 9.4 (4.2-20.9)
2 50000992 51113178 2ple.3 (NRXNI) Previously implicated NHEJ Loss Risk Yes  3.52x 107 35 3 492 x 109 14.4 (4.2-46.9)
15 28920000 30270000 15g13.3 Previously implicated NAHR Loss Risk Yes  2.22x10° 28 2 2,13 = 1077 15.6 (3.7-66.5)
1 144646000 146176000 1921.1 Previously implicated NAHR Loss + gain Risk Yes 0.00011 60 14 1.50x 10-8 3.812.1-6.9)

3 197230000 198840000 3g29 Previously implicated NAHR Loss Risk Yes 0.00024 16 0] 1.86 % 106 INF

16 28730000 28960000 16pll.2, distal Previously reported NAHR Loss Risk Yes 0.0029 11 1 5.52 x 1079 20.6(2.6-162.2)
7 72380000 73780000 7q11.23 Previously reported NAHR Gain Risk Yes 0.0048 16 1 1.68 x 10~ 16.1 (3.1-125.7)
X 153800000 154225000 Novel NAHR Gain Risk No 0.049 18 2 3.61x 104 8.9 (2.0-39.9)
22 17400000 19750000 22q11.21 Previously reported NAHR Gain Protective  No 0.024 3 16 454 x 10 0.15 (0.04-0.52)
7 64476203 64503433 7q11.21 (ZNF92) Movel NAHR Loss + gain  Protective  No 0.033 131 180 6.71x10% 0.66 (0.52-0.84)
13 19309593 19335773 13g12.11 (ZMYM5) Novel NHAR Gain Protective Mo 0.024 15 38 791x10* 0.36 (0.19-0.67)
X 148575477 148580720 Novel NAHR Gain Protective  No 0.044 12 36 1.06 x 10-3 0.35(0.18-0.68)
15 20350000 20640000 16g11.2 Previously implicated NAHR Loss Risk No 0.044 98 50 1.34x 1073 1.8(1.2-2.8)
9 831690 959090 9p24.3 (DMRTI) Novel NHEJ Loss + gain Risk No 0.049 13 1 1.35 % 1072 12.4(1.6-98.1)
8 100094670 100958984 8g22.2 (WS138) Movel NHEJ Loss Risk No 0.048 7 1 1.74 % 1073 14.5(1.7-122.2)
7 158145959 158664998 7p36.3 (VIPRZ, WDREO) Previously reported NAHR Loss + gain Risk No 0.046 20 6 5.79 % 10-3 3.51(1.3-9.0)

Presynaptic adhesion molecules NRXN1, NRXN2

Postsynaptic scaffolding proteins DLG1, DLG2, DLGAP1, SHANK1, SHANK?2

Glutamatergic ionotropic receptors GRID1, GRID2, GRINIm, GRIA4
Dystrophin and its synaptic interacting partners DMD, DTNB, SNTB1, UTRN

Contribution of copy number variants to schizophrenia

from a genome-wide study of 41,321 subjects

CNYV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium®



Associations specific to population

Genetic variants vary in frequency and effect in different populations

Analysis of 47,532 East Asians using Exome Chip revealed 14 significant
associations not present in other populations.

Of these, 12 had much lower variant frequency (<1%) in Europeans, and
the other 2 had smaller effect size (1 being in the opposite direction)
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Exome chip meta-analysis identifies novel loci and East
Asian-specific coding variants that contribute to lipid
levels and coronary artery disease

Maost genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen
only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action

at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian
individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian—
specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional
nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely
to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are
population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional
genes at associated loci.



Variants affected multiple traits

T-allele
Lys167 (K)

TM6SF2

rs58542926

C-allele
Glul67 (E)

¥ Hepatic VLDL excretion

4 Hepatic VLDL excretion

o
*Steatosis \ / i iy

AnasH

A Fibrosis

Serum
#16 Ao
"‘Toml cholesterol

fCardiovascular disease

Kahalli et al, Gastroenterology 2015

TMG6SF2 involved in VLDL efflux
from liver to blood

Increased activity raises blood
VLDL level and increases
coronary heart disease risk

Decreased activity leads to
increased lipid accumulation in
liver and non-alcholic fatty liver
disease

A “Catch-22" situation



Diseases affected by same genes

TABLE 3. Parameter Estimates for the Best-Fitting Indepen-
dent Pathway Model of Liability to Lifetime-Ever RDC
Schizophrenic, Schizoaffective, and Manic Syndromes in
Monozygotic and Dizygotic Twin Pairs?

Bivariate Correlated Factors Model

Proportion of Variance in Liability

Individual-Specific
Additive Genetic Effects Environmental Effects

Syndrome Total Common Specific Total Common Specific
Schizophrenic  0.82 0.49 0.33 0.8 0.09 0.09
Vaslabla 1 Twint | [Veriabio 2 T Ve 05 L oea) om0 013 o006 007
danic . . . . . .
Cardno, Rijsdijk, et al, Am J Psychiat, 2002
0.35 - Heritabilities Coheritabilities
0.30
£ o] e Twin studies indicated substantial
£ o5 genetic sharing between schizophrenia
8 :}z mmm and bipolar affective disorder
Z o i:l:c[::}% e This has been confirmed by GWAS
—0.05 [F
-0.10 - coNoolodggoaocgooang
§EPSYRZ25250722
E &3 é 3 3 @ S& @  Cross Disorder Group of the PGC, Nature Genetics 2013




Map of genetically related diseases
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Resolving causal relationships

e (Causal inference complicated by confounding

 Mendelian randomization: instrumental variable
related to outcome only through exposure

e Genetic variants provide multiple valid instruments

CADOR
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Predicting disease risk

Sample
Denmark
MGS
Sweden

1 2 3 4 5 6
Decile

For a polygenic disease, every person carries
a certain number of high-risk genetic
variants

Cumulative effect of all high-risk variants
present in a person: “polygenic risk score”

Population can be stratified by polygenic
risk score, e.g. into deciles, in ascending
disease risk

For schizophrenia, the highest and lowest
deciles have 8-20 fold risk difference (similar
effect as a positive family history)

Biological insights from 108
schzophrema assocmted genetic loci

Schizophrenia Working Group of the Psychiatric Gen s Consortium*
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* The effects of some genetic
variants on disease risk may
be mediated through known
risk factors

e Blood lipid levels are risk
factors for coronary heart
disease (CAD)

e “Polygenic scores” for blood

lipid levels predict CAD risk



Application to cancer screening

General population Having affected first degree relative
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Breast cancer screening may commence earlier in women with
high polygenic scores and / or positive family history

So et al, American Journal of Human Genetics 2012



Predicting treatment response

sponder
esponder

\........lmh....

»»»»»»»»»»»»»»»»»
\-@gx\ex\"(}"@(’g*q&'s*x‘Saa&x@&éQ@*&@

# of rare disruptive non-synonymous variants

AMPA AMPA + NMDA NMDA

LB X R __X__F = &= & = & _§ _E N __R N _E_§ _

.

e e

T
 Two gene-sets with excess rare damaging variants in schizophrenia
patients not responsive to antipsychotic medications
— Reduced NMDA-mediated synaptic currents
— Reduced AMPA-mediated synaptic currents

JAMA Psychiatry | Original Investigation

Effect of Damaging Rare Mutations in Synapse-Related Gene
Sets on Response to Short-term Antipsychotic Medication
in Chinese Patients With Schizophrenia



Repositioning current drugs

e Using tissue-specific e-QTL data (e.g.
GTEx), GWAS results can predict disease-
associated gene expression changes

 Many existing drugs have documented 100~

effects on gene expression.
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e Example: aspirin was identified as a § 2 -_
. . . = o T T
possible treatment of bipolar disorder. &9 RS Q Q Q
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oot 10a0aTe o0 Transhtional Psychiatry
Analysis of genome-wide association data highlights e Open Access
candidates for drug repositioning in psychiatry Treatment of bipolar depression with
Hon-Cheong So'2, Carlos Kwan-Long Chau!, Wan-To Chiu?, Kin-Sang Ho3, Cho-Pong Lo3, minocyc"ne and/or aspirin: an adaptive-’
Stephanie Ho-Yue Yim* & Pak-Chung Sham®-8 2%2 dOUble'bllnd, randomized’ placebo_

Nature Neuroscience, 2017 controlled, phase IIA clinical trial



Future Trends

Large population cohorts with comprehensive assessments of multiple
clinical outcomes, intermediate phenotypes, biomarkers, lifestyle and
environmental factors (e.g. UK Biobank)

Large-scale whole-genome sequencing (e.g. UK 100,000K Project),
enabling comprehensive assessment of rare variants

Linking up genetic data with clinical databases and other data domains

Greater integration of genetic data with functional annotation (e.g. eQTL,
Roadmap Epigenome, ENCODE)

Greater use of functional assays for evaluating the consequences of
genetic mutations
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