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Common diseases
• Single-gene diseases are distinct entities – patients are clear “outliers” 

from the general population
• In contrast, common diseases often reflect underlying pathology that is 

continuous in nature. 
• The underlying continuous pathology may be determined by multiple 

genetic and environmental factors



Multifactorial model for disease

• Numerous genetic and environmental 
factors contribute to disease

• When total burden of risk factors 
(liability) reaches a particular level 
(the threshold), disease occurs

From Hoang, Cytrynbaum & Scherer, 2017



Total genetic contribution to a disease (heritability) can be 
estimated from twin or adoption studies

Castillo-Fernandez, Spector & Bell, 2014

Heritability of common diseases

Most common human diseases have 
moderate to high heritability



Genetic variations and disease

• Genetic factors: individual differences 
in genome sequence that influence 
disease risk

• Genetic differences (variants / 
polymorphisms) arose from ancestral 
mutations.

• Some mutations have large impact 
and cause rare “monogenic” diseases

• Variants that contribute to common 
diseases have milder effects and can 
be common or rare.  

G/T (or C/A) single nucleotide 
polymorphism (SNP)
http://www.mdsupport.org/images/geneticsexplained2.jpg



Genotyping / Sequencing Technologies

• Almost all common variants in human genome 
now documented by HapMap and 1K Genomes 
Projects. 

• Efficient SNP arrays (e.g. Illumina iScan) cover 
nearly all common variants.

• Many rare variants undocumented despite large 
databases such as ExAC and gnomAD

• Comprehensive rare variants analysis requires 
high-throughput sequencing technologies (e.g. 
Illumina NovaSeq)

• High-throughput sequencing remains an order of 
magnitude more expensive than SNP arrays.



Genome-wide association studies

https://www.yourgenome.org/stories/genome-wide-association-studies

“Manhattan” Plots

Variant frequency difference

• Stringent significance threshold to 
control the number of false 
positive associations

• Large sample size required to 
achieve adequate statistical power



Nature 511, 421-427 (24 July 2014) 

Example: schizophrenia



Accumulation of GWAS findings

>10,000 genome-wide significant associations with common diseases / traits
Visscher et al, 2017



Current status of GWAS
2018 Quarter 1

Figure source: https://www.ebi.ac.uk/gwas/

>78,000 robust associations with >300 complex diseases and traits



Predicting drug targets
• Dopamine D2 receptor gene 

(DRD2) associated with 
schizophrenia

• Dopamine D2 blockade is the 
mechanism of current 
antipsychotic drugs

• LDL-associated genetic variant 
near HMGCR decreases LDL-C 
levels by 2.5 mg/dL

• Statins inhibit enzyme encoded by 
HMGCR and typically decreases 
LDL-C levels by 14-70 mg/dL

Trompet et al, 2011



Predicting successful drug targets

• The proportion of drug 
targets with direct genetic 
support increases from 
2.0% at the preclinical stage 
to 8.2% among targets for 
approved drugs



Implicating biological pathways



Converging rare & common variants

• Presynaptic adhesion molecules NRXN1, NRXN2
• Postsynaptic scaffolding proteins DLG1, DLG2, DLGAP1, SHANK1, SHANK2
• Glutamatergic ionotropic receptors GRID1, GRID2, GRIN1m, GRIA4
• Dystrophin and its synaptic interacting partners DMD, DTNB, SNTB1, UTRN 



Associations specific to population
• Genetic variants vary in frequency and effect in different populations
• Analysis of 47,532 East Asians using Exome Chip revealed 14 significant 

associations not present in other populations.
• Of these, 12 had much lower variant frequency (<1%) in Europeans, and 

the other 2 had smaller effect size (1 being in the opposite direction)



Variants affected multiple traits

• TM6SF2 involved in VLDL efflux
from liver to blood

• Increased activity raises blood 
VLDL level and increases 
coronary heart disease risk

• Decreased activity leads to 
increased lipid accumulation in 
liver and non-alcholic fatty liver 
disease

• A “Catch-22” situation 

Kahalli et al, Gastroenterology 2015



Diseases affected by same genes

Cardno, Rijsdijk, et al, Am J Psychiat, 2002

Cross Disorder Group of the PGC, Nature Genetics 2013

• Twin studies indicated substantial 
genetic sharing between schizophrenia
and bipolar affective disorder

• This has been confirmed by GWAS



Map of genetically related diseases

Bulik-Sullivan et al, Nature Genetics, 2015

Genetic sharing is 
greatest for diseases 
affecting the same cell 
type / organ / system, 
e.g. metabolic disorders, 
psychiatric disorders



Resolving causal relationships

I X Y

C

b

• Causal inference complicated by confounding
• Mendelian randomization: instrumental variable 

related to outcome only through exposure
• Genetic variants provide multiple valid instruments
• Consistent estimates implicating causal relationship 

of non-HDL cholesterol on coronary heart disease  

Tang et al. (2015)

Common Rare

Helgadottir et al. 2016



Predicting disease risk

• For a polygenic disease, every person carries 
a certain number of high-risk genetic 
variants

• Cumulative effect of all high-risk variants 
present in a person: “polygenic risk score”

• Population can be stratified by polygenic 
risk score, e.g. into deciles, in ascending 
disease risk

• For schizophrenia, the highest and lowest 
deciles have 8-20 fold risk difference (similar 
effect as a positive family history)



Polygenic scores for risk factors

• The effects of some genetic 
variants on disease risk may 
be mediated through known 
risk factors

• Blood lipid levels are risk 
factors for coronary heart 
disease (CAD)

• “Polygenic scores” for blood 
lipid levels predict CAD risk



Application to cancer screening
FH+

Having affected first degree relativeGeneral population

So et al, American Journal of Human Genetics 2012 

Breast cancer screening may commence earlier in women with 
high polygenic scores and / or positive family history



Predicting treatment response

• Two gene-sets with excess rare damaging variants in schizophrenia 
patients not responsive to antipsychotic medications
– Reduced NMDA-mediated synaptic currents
– Reduced AMPA-mediated synaptic currents



Repositioning current drugs
• Using tissue-specific e-QTL data (e.g. 

GTEx), GWAS results can predict disease-
associated gene expression changes

• Many existing drugs have documented 
effects on gene expression.

• A drug that reverses disease-related gene 
expression changes may be effective in 
treating the disease

• Example: aspirin was identified as a 
possible treatment of bipolar disorder.

Nature Neuroscience, 2017



Future Trends
• Large population cohorts with comprehensive assessments of multiple 

clinical outcomes, intermediate phenotypes,  biomarkers, lifestyle and 
environmental factors (e.g. UK Biobank)

• Large-scale whole-genome sequencing (e.g. UK 100,000K Project), 
enabling comprehensive assessment of rare variants

• Linking up genetic data with clinical databases and other data domains 
• Greater integration of genetic data with functional annotation (e.g. eQTL, 

Roadmap Epigenome, ENCODE)
• Greater use of functional assays for evaluating the consequences of 

genetic mutations
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