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7000 years ago in Africa

Shriner D, Rotimi CN. Am J Hum Genet. 2018 Apr 5;102(4):547-556. doi:
10.1016/j.ajhg.2018.02.003. Epub 2018 Mar 8.



A mutation occurred in a human B-globin gene
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Shriner D, Rotimi CN. Am J Hum Genet. 2018 Apr 5;102(4):547-556. doi:
10.1016/j.ajhg.2018.02.003. Epub 2018 Mar 8.
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The resulting human showed resistance to malaria
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The fortunate +/- carrier started a family
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The fortunate +/- mutation carrier started a family
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The +/- carriers prospered
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More and more carriers met other carriers
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The mutation and others like it spread around the world
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The mutation and others like it spread around the world

* 5% of people carry a 3-globin mutation
e >300,000 -/- affected babies born each year

Births per 1000 infants with a
major hemoglobin disorder
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The mutation and others like it spread around the world

5% of people carry a 3-globin mutation

>300,000 -/- affected babies born each year

In developing countries most die before the age of 5

In the US lifelong health care is imperfect and expensive

Births per 1000 infants with a
major hemoglobin disorder
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Can we improve things?
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Can we improve things?

Pre-empt the issue via genetic counselling
Replace the blood — transfusions or bone marrow transplant
Add a replacement gene to blood stem cells — gene therapy

Correct the mutation in blood stem cells, IPS cells or
embryos? — CRISPR

De-repress the fetal globin gene to compensate — CRISPR
or drugs (e.g. Hydroxyurea)
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Understanding is the first step to helping
1910 James Herrick observes first sickle cells in human blood

1949 Linus Pauling calls Sickle Cell a Molecular Disease
1957 Vernon Ingram identifies the Sickle Cell change (E7V)
1977 Fred Sanger’s sequencing identifies the DNA mutation

1980 Tom Maniatis reports the full globin gene sequences
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embryonic fetal adult

2018 ~1,000 different defects known but the Sickle mutation
accounts for >50% of patients
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Fetal globin can compensate for defective B-globin

e The fetus must extract O, from its mother’s blood
* In utero we produce globins with a high affinity for oxygen
 Humans express e-globin early, then y-globin, then B-globin
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Fetal globin as a compensatory gene
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Fetal globin as a compensatory gene

1948 Janet Watson notes children have fewer symptoms,
attributes this to residual fetal globin expression
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Fetal globin as a compensatory gene

1948 Janet Watson notes children have fewer symptoms,
attributes this to residual fetal globin expression

1958 In some families certain individuals express fetal
globin throughout life — Hereditary Persistence of
Fetal Hemoglobin (HPFH)
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Fetal globin as a compensatory gene

1948 Janet Watson notes children have fewer symptoms,
attributes this to residual fetal globin expression

1958 In some families certain individuals express fetal
globin throughout life — Hereditary Persistence of
Fetal Hemoglobin (HPFH)

1984 Francis Collins shows a fetal globin promoter mutation
at -117 causes HPFH
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Several different HPFH families were discovered

(Collins et al., 1985 & Fessas et al., 1964)
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How do the regulatory mutations in the fetal globin
promoter alleviate repression?
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How do the regulatory mutations in the fetal globin
promoter alleviate repression?
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Identifying the -115 site transcriptional repressor
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Identifying the -115 site transcriptional repressor

Gabriella Martyn
Performed a candidate screen on several
key erythroid transcription factors

WT -115 y-globin site

- BCL11A

- GFI1B

- SOX6
ZBP-89
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Identifying the -115 site transcriptional repressor

WT -115 y-globin site

COS
- BCL11A
' GFIB
- SOX6
ZBP-89
' ZBTB7A

What do we know about BCL11A?

quw Previously shown by genome wide

association studies (GWAS) to be a
repressor of fetal globin
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The known HPFH mutations disrupt BCL11A binding
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Detecting BCL11A binding in vivo
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Beeke Wienert worked on the -200 cluster
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ZBTB7A/LRF binds the -200 region in vitro
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The -200 mutations disrupt ZBTB7A/LRF binding
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ZBTB7A/LRF binds the -200 site in vivo

K562
IP ZBTB7A

CAGTATCCTCTTGGGGECCCCTTCOCCACACTATCTCARTGCAAR
-200 site
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The -195 HPFH mutation disrupts binding

K562
IP ZBTB7A
3CAGTATCCTCTTGGEGEOCCCTTCOCCACACTATCTCARTGCAR
-200 site
-200
d [0-2.66]
HUDEP-2
(A%y)
HUDEP-2 [0-2.66]
(A%)
-195C=G

"HBG1




The mechanism of the HPFH mutations is solved
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Current and future therapies




Current and future therapies

 Making CRISPR-mediated deletions to disrupt fetal globin
repression and boost its expression

Wienert...Matt Porteus...Merlin Crossley, Nat. Comm. 2015
Wienert...Merlin Crossley, Blood 2016

Ye ... Y.W. Kan, Proc. Natl Acad. Sci. USA 2016

Traxler ... Mitch Weiss, Nat. Medicine, 2016
Antoniani...Matt Porteus...Anarita Miccio, Blood, 2018
Li...André Lieber, Blood, 2018

Liu...Stuart Orkin, Cell, 2018

Martyn ... Merlin Crossley, Nat. Genetics, 2018 _;L

Bcllla
Psatha ... Thalia Papayannopoulou, Mol. Ther. Methods Clin. Dev. 2018
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Current and future therapies

e Editing and Homology Directed Repair to correct the Sickle
Cell mutation in blood stem cells

Dever ... Matt Porteus, Nature 2016
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Current and future therapies

e Editing and Homology Directed Repair to correct the Sickle
Cell mutation in blood stem cells

Dever ... Matt Porteus, Nature 2016

e Or in Human Induced Pluripotent Stem Cells (hiPS)

Ramalingam...Sivaprakash Ramalingam, Curr. Gene Therapy 2014
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Current and future therapies

 CRISPR base editors to correct the mutation without any
cutting

Liang ... Junjiu Huang, Protein Cell 2017
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CRISPR-mediated therapies for blood will happen

Life-threatening, painful, lifelong, widespread and
economically costly disorder

Inadequate and expensive current therapies

CRISPR therapies build on solid prior knowledge — of the
disorder, the gene architecture, gene replacement gene
therapy, stem cell transplants, etc

Blood is well-understood and can be genetically
manipulated and transplanted
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