

Second International Summit on Human Genome Editing

Convened by:

The Academy of Sciences of Hong Kong
The Royal Society
U.S. National Academy of Sciences
U.S. National Academy of Medicine

Lee Shau Kee Lecture Centre Centennial Campus The University of Hong Kong

November 27-29, 2018

Gene Correction via Genome Editing of Hematopoietic Stem Cells to Cure Sickle Cell Disease

Matthew Porteus MD PhD
Department of Pediatrics

Divisions of Stem Cell Transplantation and Regenerative Medicine,
Hematology/Oncology and Human Gene Therapy
Institute of Stem Cell Biology and Regenerative Medicine
Child Health Research Institute
Stanford University
mporteus@stanford.edu
28 November 2018

Conflicts of Interest

CRISPR Therapeutics: Equity and SAB

Allogene Therapeutics: SAB Synthego Corporation: SAB

Managed through Stanford in accordance with their conflict of interests policy.

Monogenic Diseases Permeate Medicine (6,000-10,000 such diseases)

(Patients: 30 million in USA, 350 million worldwide)

Hematology: Sickle Cell Disease/Thalassemia

Hematology: Hemophilia

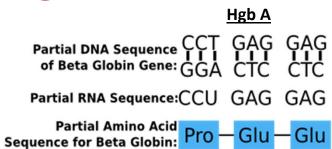
Pulmonary: Cystic Fibrosis

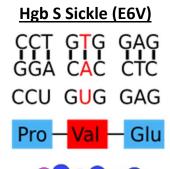
Immunology: Primary Immunodeficiencies (e.g. Severe Combined

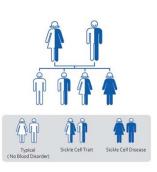
Immunodeficiency (SCID))

Cardiology: Familial Hypercholesterolemia

Dermatology: Epidermolysis bullosa

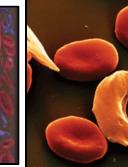

Genetics: Muscular Dystrophy, MPS I


Neurology: Huntington's Disease, Myotonic Dystrophy, NGLY1


deficiency

Each patient affects a larger community of people (echoes of the disease) + life years saved

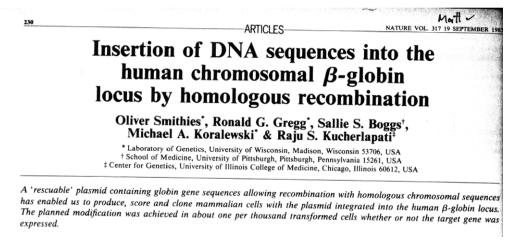
Sickle Cell Disease is Caused by a Single Nucleotide Variant in the *HBB* Gene


Hemoglobin Molecule:

Red Blood Cell:

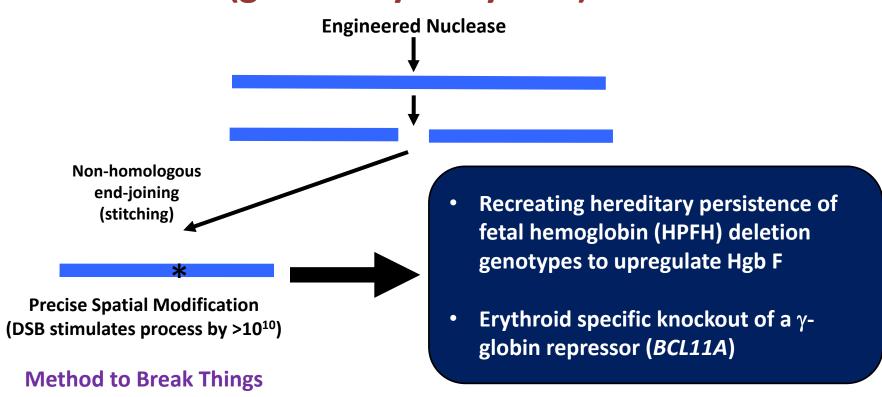
Median Lifespan

United States: mid-40s

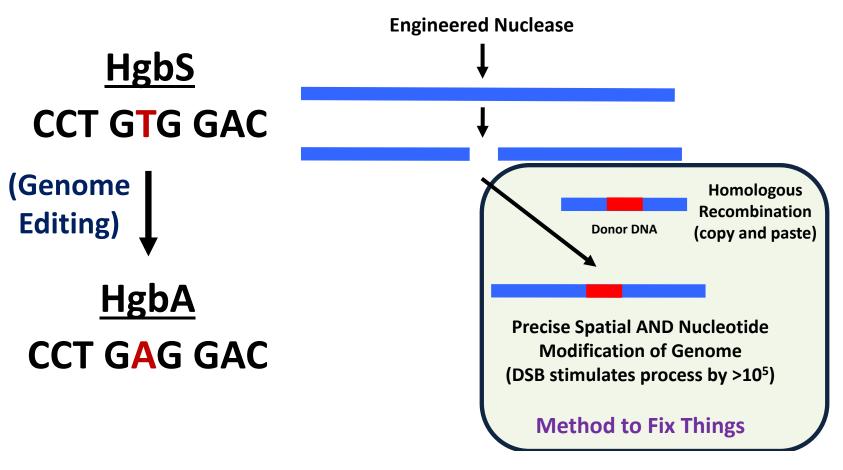

(though taking medicine for pain >3 times/week) (neurocognitive damage starts occurring in first years of life)

Africa: 5-8 years old

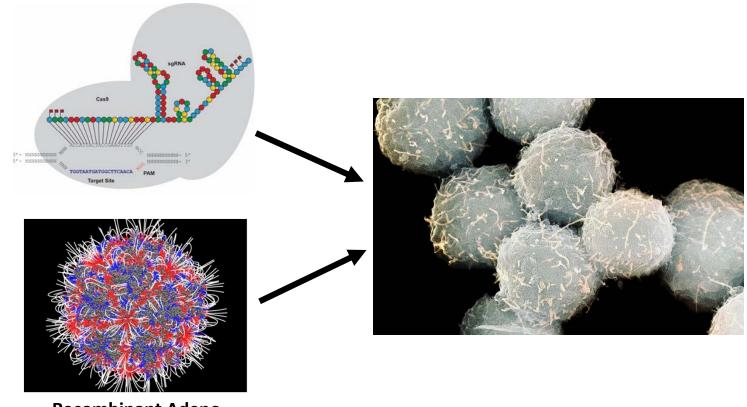
Engineering the DNA of Stem Cells to Cure Genetic Diseases is not a new Idea


"... many instances of blood disorders, mental problems, and a host of other disabilities are traceable to a malfunctioning gene. It would be a triumph of medicine if the effects of such genes could be countered... A patient could, for instance, be treated in this way for a blood disease caused by an abnormal protein made by a mutant gene. A normal gene would be inserted into the precursor cells-immature bone marrow cells that ultimately develop into functioning blood cells. In this way, a normal protein could be made in place of, or along with, the aberrant protein. The genetically altered blood cell precursor could then cure the patient's disease..."

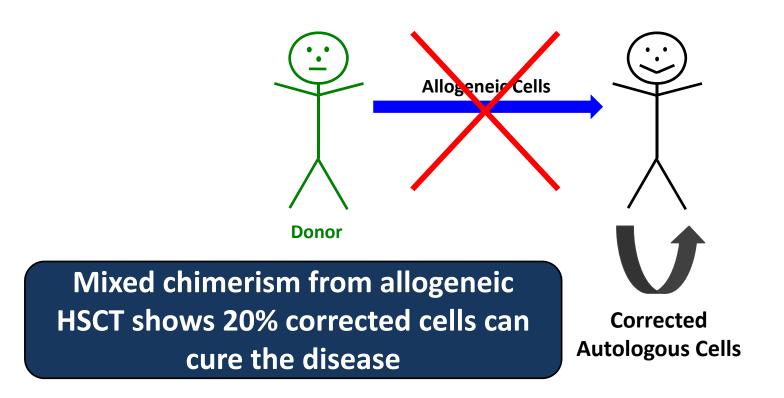
-David Baltimore (1978)



Frequency was 10⁻⁶

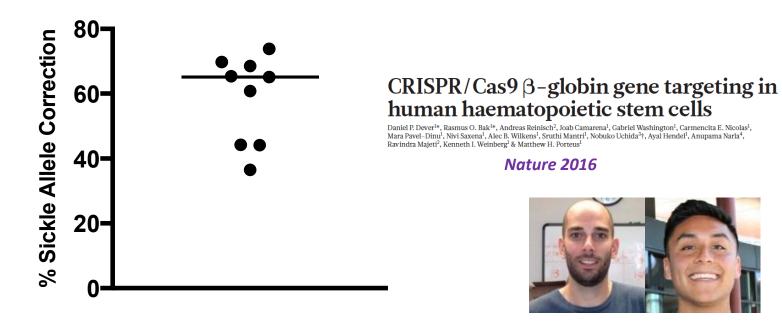

Genome Editing Provides a Precise Method of Genetically Engineering Cells to Treat Sickle Cell Disease (genetic hydroxyurea)

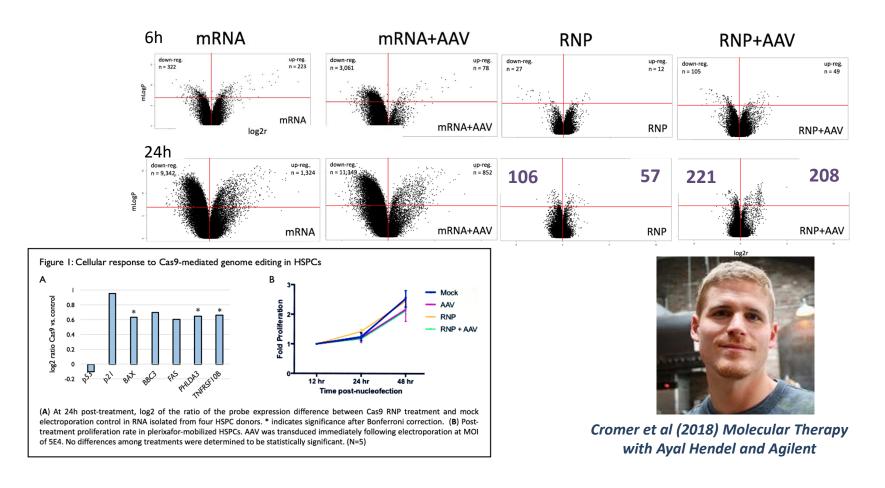
Genome Editing Provides a Precise Method of Genetically Engineering Cells to Cure Sickle Cell Disease


RNP/AAV6 Genome Editing System for CRISPR/Cas9 System

Recombinant Adeno-Associated Virus (AAV6)

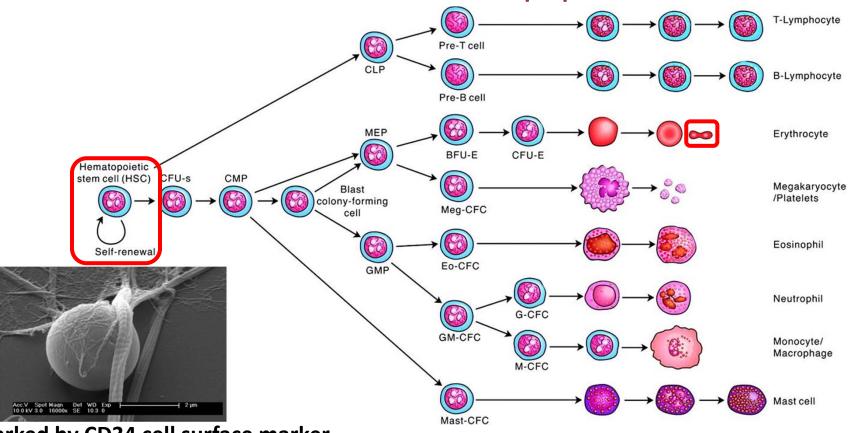
Bak, Dever et al Nature Protocols (2018); Charlesworth, Camarena et al MTNA (2018)


Replace Allogeneic Cells with Corrected Autologous Cells


Editing Sickle Variant in CD34+ HSPCs from Sickle Cell Disease Patients

A

E6V
PAM
SgRNA
HbS GTGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAG
HR GAGGAAAAATCCGCAGTCACTGCCCTGTGGGGCAAG



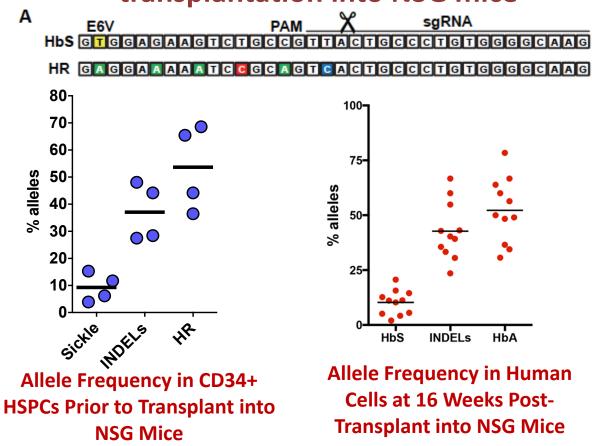
RNP and AAV change gene expression much less significantly than Cas9 mRNA in CD34+ HSPCs

Do the gene corrected stem cells do what they are supposed to do?

- 1. Make non-sickling red blood cells
- 2. Retain their stem cell properties

Marked by CD34 cell surface marker

Gene Corrected Patient Derived CD34+ HSPCs Differentiated in vitro into RBCs Generate High Levels of HgbA and Low Levels of HgbS


Percent of Beta-Globin Derived Hemoglobin in Total RBC Population (no selection)

Sample	Hgb A	Hgb S		
Mock	0.73 +/- 1.0	99.27 +/- 1.0		
Gene Corrected (RNP+AAV6)	92.5 +/- 4.3	7.5 +/- 4.3		

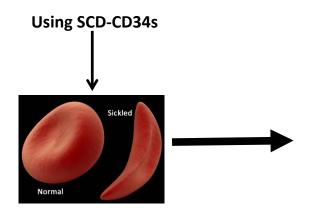
N=6

Keeping the %S <30% stops disease progression

High Frequencies of Gene Correction at *HBB* in Patient Derived CD34+ HSPCs is maintained after transplantation into NSG mice

What about potential off-target INDELs?

Peter Marks (head of CBER, FDA): "We don't want off-target events leading to serious adverse events."

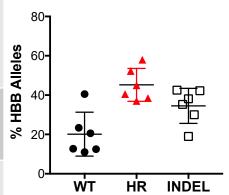

Implication: Off-target changes *per se* are not serious adverse events—only if they lead to functional adverse events.

Using Three Different Methods to Identify Potential Off-Target Sites, only Two bonafide Sites Identified in CD34+ HSPCs

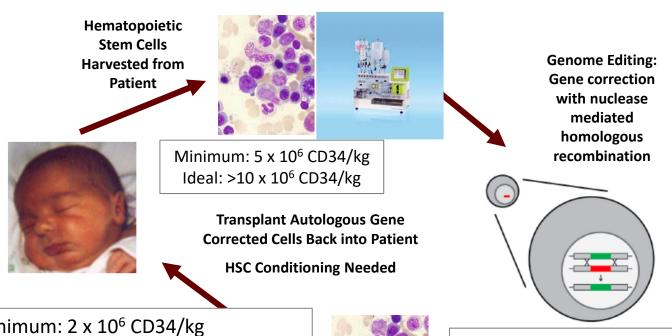
ICOSMIIDI I		CIRCLE-	Site	Sequence	Closest Gene	Distance	Feature		NHEJ	Mock
COSMID	Seq	Seq	5166	sequence	Closest Gene	(kb)	1 catare	hg19 Location	111129	INTOCK
			R02	CTTGCCCCACAGGGCAGTAANGG	HBB	n/a	Exon	Chr11:5248198-5248220	54.7	0.767
COS1	GS1	CS2	OT1	TCAGCCCCACAGGGCAGTAAGGG	GRIN3A	95.004	Intergenic	<u>Chr9:104595866-</u> <u>104595888</u>	16.2	0.076
COS2			OT2	C <mark>C</mark> TCTCCCACAGGGCAGTAAAGG	LINC01482	0.034	Intergenic	Chr17:66624239-66624261	0.048	0.041
COS3			ОТ3	TTT T CCCCA A AGGGCAGTAAT <mark>A</mark> G	MYO16	n/a	Intron	<u>Chr13:109818336-</u> <u>109818358</u>	0.012	0.007
COS8	GS2	CS7	OT4	GTGGCCCCACAGGGCAGGAANGG	MAGEE2	1.209	Intergenic	ChrX:75006240-75006262	0.003	0.005
COS7	GS3	CS4	OT5	GCTGCCCCACAGGGCAGCAANGG	FAM101A	3.258	Intergenic	<u>Chr12:124803828-</u> <u>124803850</u>	0.15	0.015
	GS4		ОТ6	GATGCCATTCATAGCAGTCANCG	C22orf34	225.248	Intergenic	Chr22:49582904-49582926	0	0.001
COS23			OT7	CTCGCCCCTCAGGGCAGTAGTGG	GREB1	n/a	Intron	Chr2:11777795-11777817	0.006	0.042
COS9		CS1	ОТ8	TGTGCCCCACAGAGCACTAANGG	LOC101929350	1.3kb	Intergenic	Chr22:17230606-17230628	0.028	0.064
COS19		CS3	ОТ9	ATTGCCCCAC <mark>G</mark> GGGCAGT <mark>G</mark> ANGG	LOC643339	n/a	Intron	Chr12:93549185-93549207	0.054	0.016
COS26		CS5	OT10	GTTGCCCC T CAGG A CAGTA C NGG	LOC105370802	374kb	Intergenic	Chr15:46598112-46598134	n.d.	n.d.
		CS6	OT11	G AA GCCC T ACAGGGCAG <mark>C</mark> AANGG	NRSN1	416kb	Intergenic	chr6:23709573-23709595	0.024	0.006
COS15		CS8	OT12	ATGGCCCCACAAGGCAGAAANGG	IFI27	2.3kb	Intergenic	Chr14:94585321-94585343	0.013	0.018
		CS9	OT13	A <mark>G</mark> TGCC A CACA <mark>CA</mark> GCAGTAANGG	DOCK5(H3K27 Ac)	110kb	Intergenic	chr8:24931375-24931397	0.015	0.006
		CS10	OT14	T <mark>G</mark> TGC A CCACAG A GCA A TAANGG	ZNF716	183kb	Intergenic	chr7:57716460-57716482	0.019	0.04
		CS11	OT15	GTT AT CCCACAGG <mark>A</mark> CAGT <mark>G</mark> ANGG	SFTA3	53kb	Intergenic	chr14:36889532-36889554	0.055	0.043

with Ciaran Lee and Gang Bao (Rice University)

HiFi SpCas9 (R691A) Mediates High Level Sickle Gene Correction while Reducing Off-Target INDELs by > 1-log in Sickle Cell Patient Derived CD34+ HSPCs

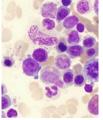

HiF

Probably safer than life (or flying across the Pacific Ocean)


(Vakulskas et al, Nature Medicine, 2018)

Scaling up the Gene Correction Process

Assay	Specs	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
Viability (%)	>70%	90	79	65	75	75	80
Total Viable Cell Count	Report	100 million	24 million	29 million	73 million	111 million	145 million
Phenotypic Analysis	>80% CD34	85.0	99.8	99.7	93.0	92.0	92.0
Percent Allele Correction		56	41	39	37	44.5	52
Percent Cells Corrected	>20%	65	47	53	54	ND	P

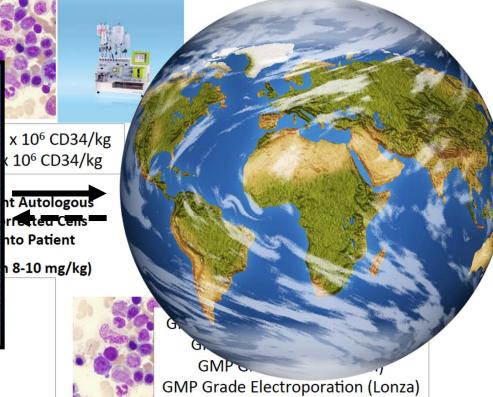


Manufacturing of Autologous HR-Edited Cell Product

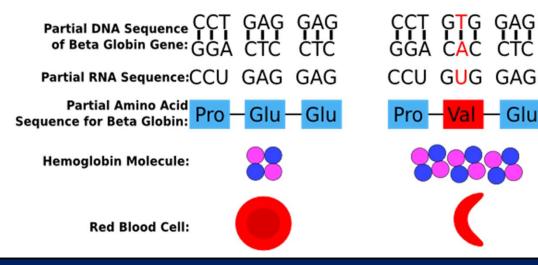
Minimum: 2 x 10⁶ CD34/kg Ideal: 10 x 10⁶ CD34/kg

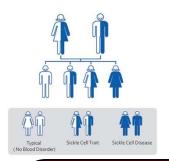
Level of HR modification depends on the disease Sickle/ β -thal (>20%)

GMP Grade HiFi Cas9 Protein (Aldevron)
GMP Grade sgRNA (Agilent)
GMP Grade AAV6 (CMO)
GMP Grade Electroporation (Lonza)


Ethics of Genome Editing (Equity and Distribution (justice))

Hematopoietic Stem Cells Harvested from



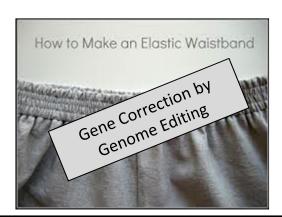

Ideal: >10% Gene Correction with

No off-target mutations/rearrangements above background and no signs of functional toxicity

Genome Editing to Cure Disease using Somatic Stem Cells is an Anti-Eugenics Program

Median Lifespan

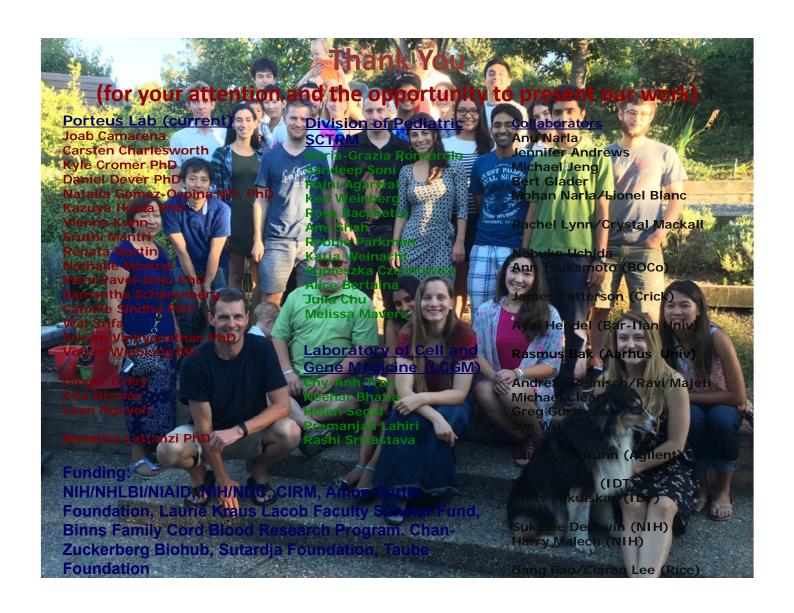
United States: mid-40s


Africa: 5-8 years old

- As somatic cell editing becomes effective, cheap and widespread, the need for germline editing decreases.
- As somatic cell editing becomes effective, cheap, and widespread, the frequency of disease causing alleles in the population will increase. This consequence should be embraced.

There are many different ways to prevent your pants from falling down (including not even wearing pants):

Developing a diverse set of approaches to cure sickle cell disease is a good thing



- 10 years to determine which approach will be best for which patients (patience)
 - Bakshi et al (2018); Hijmans et al (2010) (impatience)

