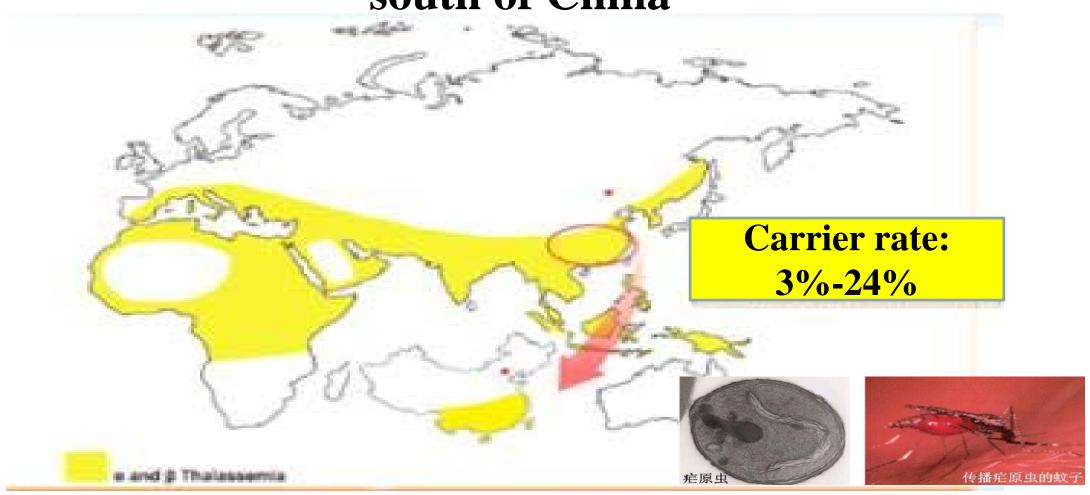

# Fix β-thalassemia in Human Embryo

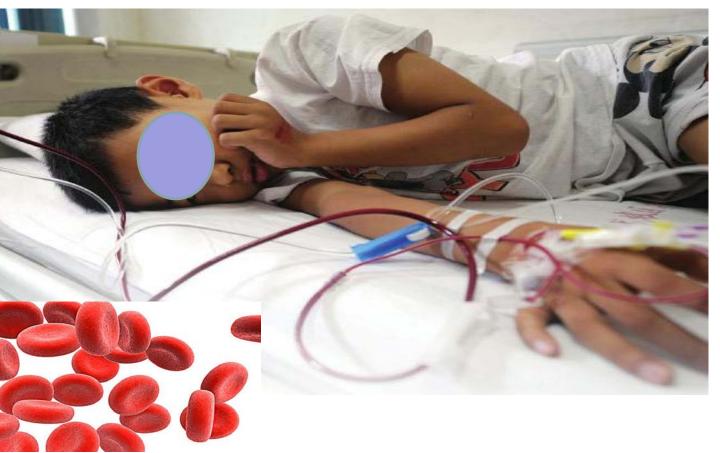
Junjiu Huang


School of Life Sciences, Sun Yat-sen University

#### **Thalassemia**

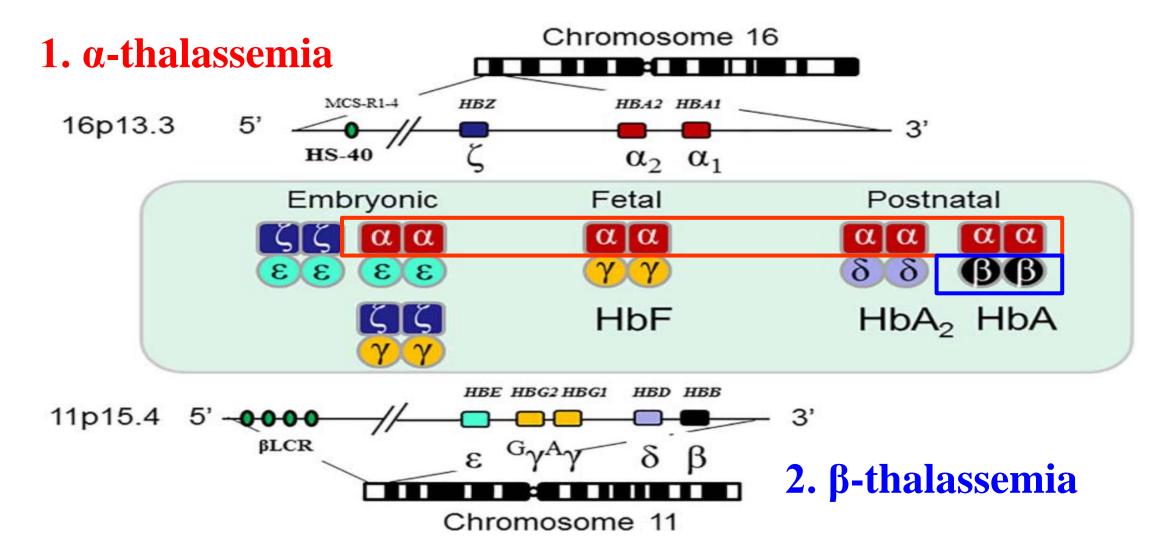
Thalassemia is an inherited blood disorder characterized by abnormal hemoglobin production. It was found in the Mediterranean area in 1925.



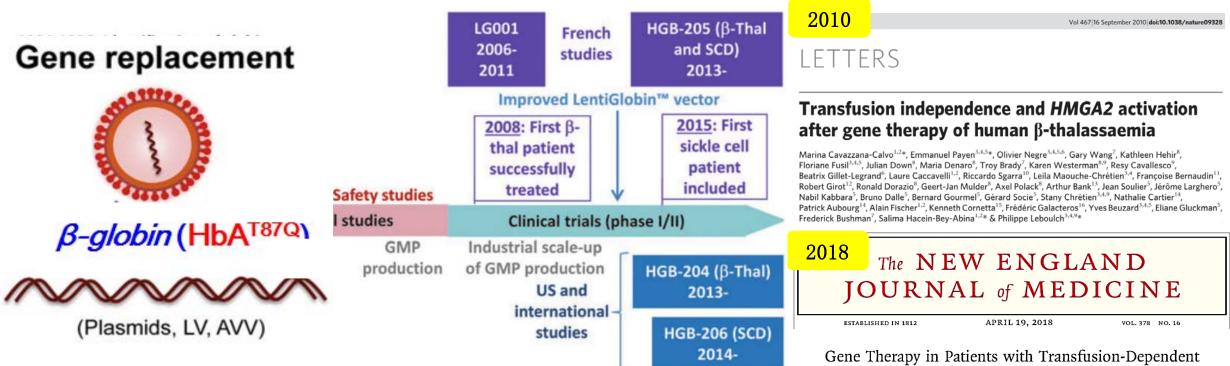

# Thalassemia: High incidence of hereditary diseases in the south of China



High incidence in Guangdong, Guangxi and Guizhou.....


#### **Clinical Symptoms**






- 1. Transfusion;
- 2. Allogeneic hematopoietic-cell transplantation.

#### Genetic Mechanism of Thalassemia



### Gene Therapy with LentiGlobin by Bluebird Bio



β-Thalassemia

Other gene therapy trials,

A.A. Thompson, M.C. Walters, J. Kwiatkowski, J.E.J. Rasko, J.-A. Ribeil, S. Hongeng, E. Magrin, G.J. Schiller,

A.A. Thompson, M.C. Walters, J. Kwiatkowski, J.E.J. Rasko, J.-A. Ribeil, S. Hongeng, E. Magrin, G.J. Schiller, E. Payen, M. Semeraro, D. Moshous, F. Lefrere, H. Puy, P. Bourget, A. Magnani, L. Caccavelli, J.-S. Diana, F. Suarez, F. Monpoux, V. Brousse, C. Poirot, C. Brouzes, J.-F. Meritet, C. Pondarré, Y. Beuzard, S. Chrétien, T. Lefebvre, D.T. Teachey, U. Anurathapan, P.J. Ho, C. von Kalle, M. Kletzel, E. Vichinsky, S. Soni, G. Veres, O. Negre, R.W. Ross, D. Davidson, A. Petrusich, L. Sandler, M. Asmal, O. Hermine, M. De Montalembert, S. Hacein-Bey-Abina, S. Blanche, P. Leboulch, and M. Cavazzana

A clinical approval for the gene therapy might come in 2019 ?!

Italy, US

with lentiviral vectors

(see Table 2)

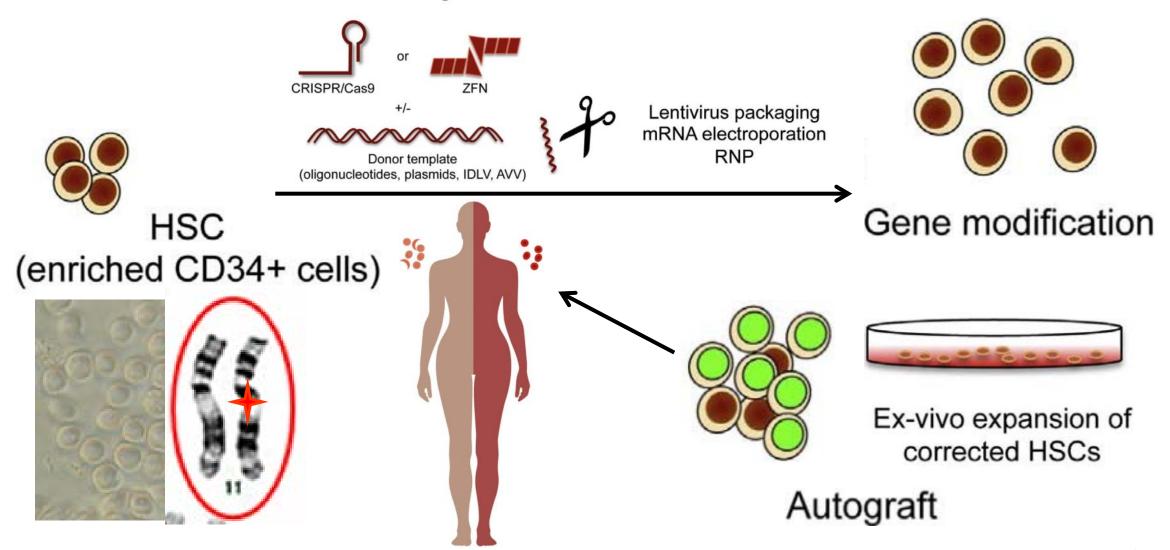
Emmanuel Payen et al. HUMAN GENE THERAPY 2016

### **Gene Editing**

- 1. Science: Breakthrough of the Year 2012 (TALEN)
- 2. Science: Breakthrough of the Year 2013 (CRISPR/Cas9)
- 3. Nature: Ten people who mattered this year 2013 (Feng Zhang)
- 4. Nature: Ten people who mattered this year 2015 (Junjiu Huang)
- 5. Science: Breakthrough of the Year 2015 (CRISPR/Cas9)
- 6. Nature: The science events that shaped 2015 (CRISPR/Cas9)
- 7. Nature: Ten people who mattered this year 2017 (David Liu)
- 8. Science: Breakthrough of the Year 2017 (Pinpoint gene editing)
- 9. Nature: The science events that shaped 2017 (Human embryo editing)









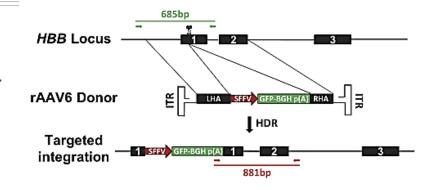



### Treat \u03c3-thalassemia with Gene Editing in HSC

Gene editing



### Fix β-thalassemia in Somatic Cells


**ARTICLE** 

2016:

doi:10.1038/nature20134

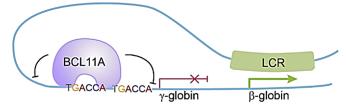
# CRISPR/Cas9 \( \beta \) – globin gene targeting in human haematopoietic stem cells

Daniel P. Dever<sup>1\*</sup>, Rasmus O. Bak<sup>1\*</sup>, Andreas Reinisch<sup>2</sup>, Joab Camarena<sup>1</sup>, Gabriel Washington<sup>1</sup>, Carmencita E. Nicolas<sup>1</sup>, Mara Pavel-Dinu<sup>1</sup>, Nivi Saxena<sup>1</sup>, Alec B. Wilkens<sup>1</sup>, Sruthi Mantri<sup>1</sup>, Nobuko Uchida<sup>3</sup>†, Ayal Hendel<sup>1</sup>, Anupama Narla<sup>4</sup>, Ravindra Majeti<sup>2</sup>, Kenneth I. Weinberg<sup>1</sup> & Matthew H. Porteus<sup>1</sup>

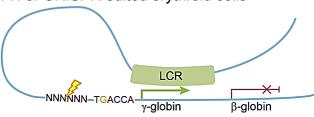




2018:


#### Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch

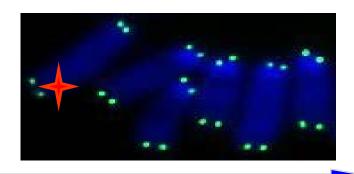
Nan Liu,<sup>1,9</sup> Victoria V. Hargreaves,<sup>1,9</sup> Qian Zhu,<sup>2,9</sup> Jesse V. Kurland,<sup>3</sup> Jiyoung Hong,<sup>1</sup> Woojin Kim,<sup>1</sup> Falak Sher,<sup>1</sup> Claudio Macias-Trevino,<sup>1</sup> Julia M. Rogers,<sup>3,4</sup> Ryo Kurita,<sup>5</sup> Yukio Nakamura,<sup>5</sup> Guo-Cheng Yuan,<sup>2</sup> Daniel E. Bauer,<sup>1</sup> Jian Xu,<sup>6</sup> Martha L. Bulyk,<sup>3,4,7</sup> and Stuart H. Orkin<sup>1,8,10,\*</sup>


<sup>1</sup>Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

#### **Article**

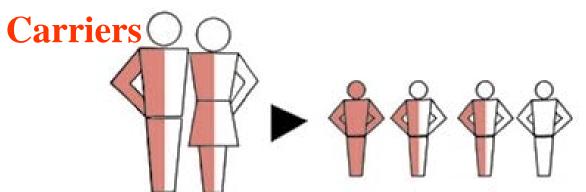
Normal adult human erythroid cells




HPFH or CRISPR edited erythroid cells



### How to Get a Healthy Baby for Patients?


#### Inherited Mutations







A zygote develops to a complex human body, which is made of 60 trillion cells.



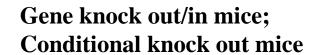
- 25% Healthy Offspring
- 50% Carriers or Patients
- 25% Patients

### Third Generation Test-tube Baby Technology

#### **Preimplantation Genetic Testing (PGT): PGD and PGS**

Using PGT to help  $\beta$ -thalassemia/DMD patients since 2000.

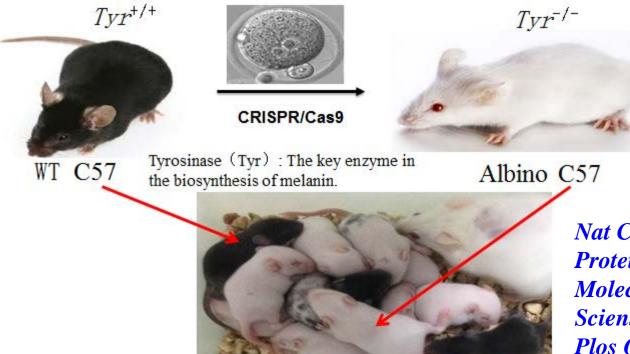
IVF Center in First Affiliated Hospital found in 1989.







Screen Genes, Pick up Healthy Embryos!


Can We Repair or Block Inherited Mutations in Human Embryo ???

### Model Mouse Research Center, Sun Yat-sen University



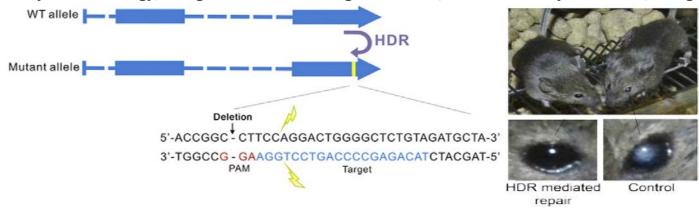






Nat Commun. 2018
Protein Cell 2017
Molecular Cell 2016
Scientific Reports 2016
Plos ONE 2015
Cell Research 2011
Aging Cell 2009
Stem Cells 2008 12

# Correction of a Gene Mutation in Mouse Zygote


2013:

Cell Stem Cell
Brief Report

### Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9

Yuxuan Wu,<sup>1,7</sup> Dan Liang,<sup>1,2,7</sup> Yinghua Wang,<sup>1,2</sup> Meizhu Bai,<sup>1,3</sup> Wei Tang,<sup>4</sup> Shiming Bao,<sup>5</sup> Zhiqiang Yan,<sup>5</sup> Dangsheng Li,<sup>6</sup> and Jinsong Li<sup>1,3,\*</sup>

<sup>1</sup>Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China



What Risks in Fixing β-thalassemia in Human Embryo with CRISPR/Cas9?

#### CRISPR/Cas9-mediated editing of *HBB* gene in human



# CRISPR/Cas9-mediated editing of *HBB* gene in human tripronuclear zygotes





**Unexpected repairs** 

| Targeted editing of the HBB gene in human 3PN zygotes by intra-cytoplasmic injection |                            |                       |      |                   |                  |                   |                     | 1 |
|--------------------------------------------------------------------------------------|----------------------------|-----------------------|------|-------------------|------------------|-------------------|---------------------|---|
| Group<br>No.                                                                         | Cas9/gRNA/ssDNA<br>(ng/μL) | Survived<br>/injected | GFP⁺ | PCR-<br>amplified | Cas9-<br>cleaved | Edited with ssDNA | Recombined with HBD |   |
| 1                                                                                    | 100/20/2                   | 10/11                 | 6    | 6                 | 4                | 0                 | 1                   | Γ |
| 2                                                                                    | 100/20/20                  | 22/29                 | 17   | 17                | 7                | 1                 | 0                   | ı |
| 3                                                                                    | 200/40/200                 | 12/14                 | 12   | 10*               | 6                | 2                 | 2                   |   |
| 4                                                                                    | 200/40/200                 | 27/32                 | 24   | 21*               | 11               | 1                 | 4                   | L |
| Total                                                                                | -                          | 71/86<br>(82.6%)      | 59   | 54                | 28<br>(51.9%)    | 4<br>(14.3%)      | 7<br>(25.0%)        |   |

# CRISPR/Cas9 has off-target effect in human tripronuclear embryos

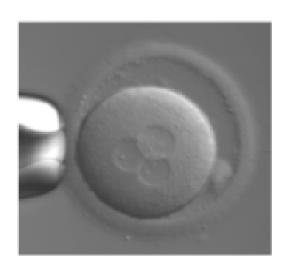
No.16 embryo

GCATCTGACTCCTGAGGAGAAAAATCCGCTGTCACTGCCCTGTGGGGCAAGGTGAA 6/50
GCATCTGACTCCTGAAGAAAAAATCCGCCGTTACTGCCCTGTGGGGCAAGGTGAA 1/50
GCATCTGACTCCTGAGGAGAAAAAATCCGCCGTTACTGCCCTGTGGGGCAAGGTGAA 21/50
GCACCTGACTCCTGAG—AAGTCTGCCGTTACTGCCCTGTGGGGCAAAGTGAA 14/50

#### CRISPR/Cas9 induced on- and off-target indels in exomes of human 3PN embryos

| Cas9/gRNA (ng/μL)                     | 100/20 |   |   |               | Low concentration group |  |  |
|---------------------------------------|--------|---|---|---------------|-------------------------|--|--|
| Sample No.                            | Α      | В | С | Embryo<br>No. | 1 2 3 4 5 6 7 8 9 10 11 |  |  |
| On-target indels                      | 1      | 1 | 1 | C1QC          |                         |  |  |
| Candidate off-target sites            | 1      | 0 | 1 | Ciqe          |                         |  |  |
| T7E1 assay confirmed off-target sites | 1      | 0 | 1 | TTR           |                         |  |  |
|                                       |        |   |   |               | CONTRACTOR              |  |  |

2015:


#### RESEARCH ARTICLE

# CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes

Puping Liang, Yanwen Xu, Xiya Zhang, Chenhui Ding, Rui Huang, Zhen Zhang, Jie Lv, Xiaowei Xie, Yuxi Chen, Yujing Li, Ying Sun, Yaofu Bai, Zhou Songyang, Wenbin Ma, Canquan Zhou<sup>⊠</sup>, Junjiu Huang<sup>⊠</sup>

# The world's first report of human embryos altered by Gene Editing.

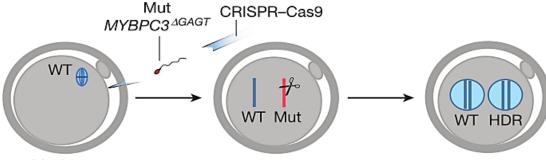
#### Risks!!!



- 1) NHEJ (nonhomologous end joining);
- 2) Mosaicism;
- 3) Off-target mutations;
- 4) Using endogenous genes as templates;

2017:




# First U.S.-based group to edit human embryos brings practice closer to clinic

By Kelly Servick | Aug. 2, 2017, 1:00 PM

Using the endogenous WT allele as a template in normal human embryos

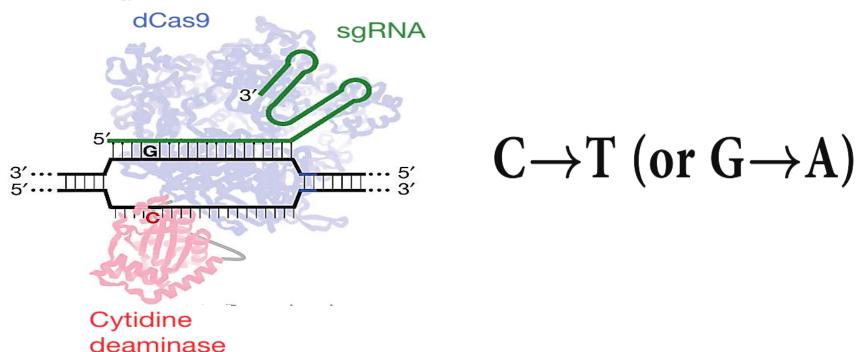


MII oocyte injection



# Correction of a pathogenic gene mutation in human embryos

Hong Ma<sup>1\*</sup>, Nuria Marti-Gutierrez<sup>1\*</sup>, Sang-Wook Park<sup>2\*</sup>, Jun Wu<sup>3\*</sup>, Yeonmi Lee<sup>1</sup>, Keiichiro Suzuki<sup>3</sup>, Amy Koski<sup>1</sup>, Dongmei Ji<sup>1</sup>, Tomonari Hayama<sup>1</sup>, Riffat Ahmed<sup>1</sup>, Hayley Darby<sup>1</sup>, Crystal Van Dyken<sup>1</sup>, Ying Li<sup>1</sup>, Eunju Kang<sup>1</sup>, A.-Reum Park<sup>2</sup>, Daesik Kim<sup>4</sup>, Sang-Tae Kim<sup>2</sup>, Jianhui Gong<sup>5,6,7,8</sup>, Ying Gu<sup>5,6,7</sup>, Xun Xu<sup>5,6,7</sup>, David Battaglia<sup>1,9</sup>, Sacha A. Krieg<sup>9</sup>, David M. Lee<sup>9</sup>, Diana H. Wu<sup>9</sup>, Don P. Wolf<sup>1</sup>, Stephen B. Heitner<sup>10</sup>, Juan Carlos Izpisua Belmonte<sup>3</sup>§, Paula Amato<sup>1,9</sup>§, Jin-Soo Kim<sup>2,4</sup>§, Sanjiv Kaul<sup>10</sup>§ & Shoukhrat Mitalipov<sup>1,10</sup>§


### **Cytidine Base Editor(CBE)**

#### LETTER

doi:10.1038/nature17946

# Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

Alexis C. Komor<sup>1,2</sup>, Yongjoo B. Kim<sup>1,2</sup>, Michael S. Packer<sup>1,2</sup>, John A. Zuris<sup>1,2</sup> & David R. Liu<sup>1,2</sup>



2017:

# Gene Modified Mouse Embryo with Cytidine Base Editor

Protein Cell DOI 10.1007/s13238-017-0418-2



DOI 10.1007/s13238-017-0432-4

#### RESEARCH ARTICLE

### Effective gene editing by high-fidelity base editor 2 in mouse zygotes

**D10A** 

Puping Liang<sup>1,2,3⊠</sup>, Hongwei Sun<sup>1</sup>, Ying Sun<sup>1</sup>, Xiya Zhang<sup>1</sup>, Xiaowei Xie<sup>1</sup>, Jii Zhen Zhang<sup>1,4</sup>, Yuxi Chen<sup>1</sup>, Chenhui Ding<sup>3</sup>, Yuanyan Xiong<sup>1</sup>, Wenbin Ma<sup>1</sup>, D HIGHLIGHT Junjiu Huang<sup>1,2⊠</sup>, Zhou Songyang<sup>1,2,3,5⊠</sup>

<sup>1</sup> Key Laboratory of Gene Engineering of the Ministry of Education, Guangzhou Key Lab

rAPOBEC1

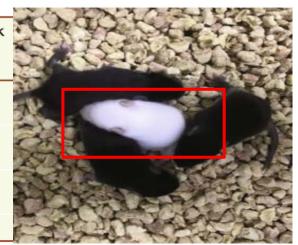
Editing base in mouse model

Lab

Haoyi Wang

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

□ Correspondence: wanghaoyi@ioz.ac.cn (H. Wang)


HF2-BE2

D<sup>CrossMark</sup> Protein & Cell

#### Production of Homozygous F0 mouse with CBE

Table 1. Summary of base editing by HF2-BE2 in founder mice

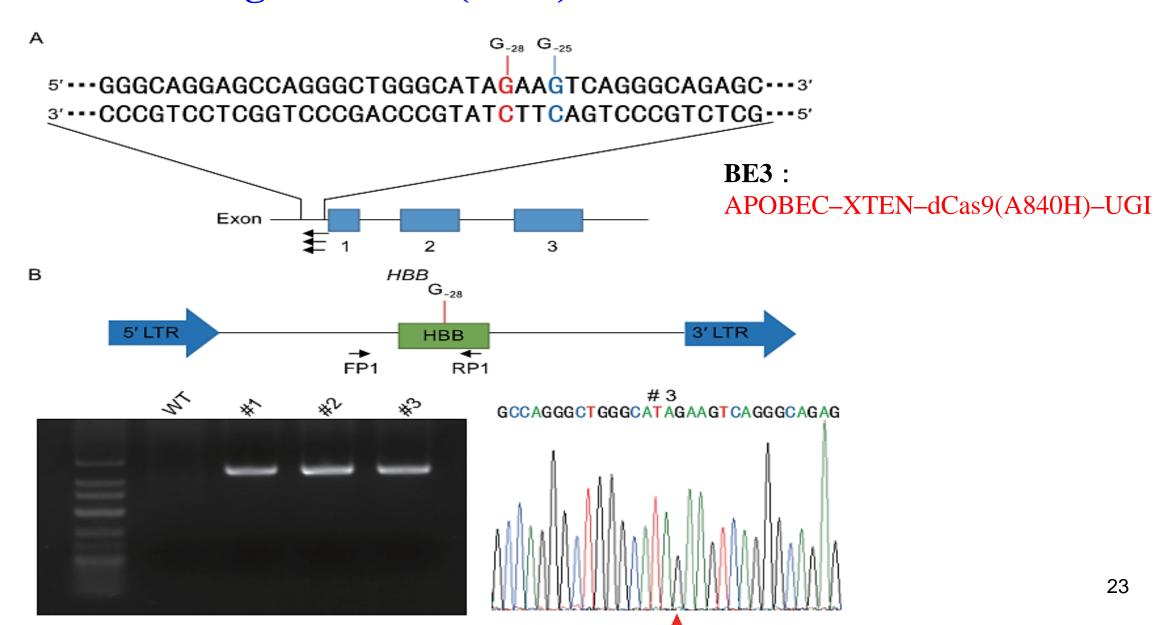
|                              | or bass saming by             |                             |                       |                    |                          |
|------------------------------|-------------------------------|-----------------------------|-----------------------|--------------------|--------------------------|
| Group                        | Survived/Injected embryos (%) | Pups/<br>Transferred<br>(%) | Albino<br>pups<br>(%) | Mosaic<br>pups (%) | Mutant black<br>pups (%) |
| gRNA-1 + HF2-<br>BE2 mRNA*   | 120/162 (74.1)                | 13/120<br>(10.8)            | 0                     | 0                  | 2 (18.2) *               |
| gRNA-2 + HF2-<br>BE2 mRNA    | 106/145 (73.1)                | 11/106<br>(10.4)            | 1 (9.1)               | 4 (36.4)           | 2 (18.2)                 |
| HF2-BE2<br>mRNA <sup>#</sup> | 108/142 (76.1)                | 14/108<br>(13.0)            | 0                     | 0                  | 0                        |
| H <sub>2</sub> O             | 103/146 (70.5)                | 9/103 (8.7)                 | 0                     | 0                  | 0                        |



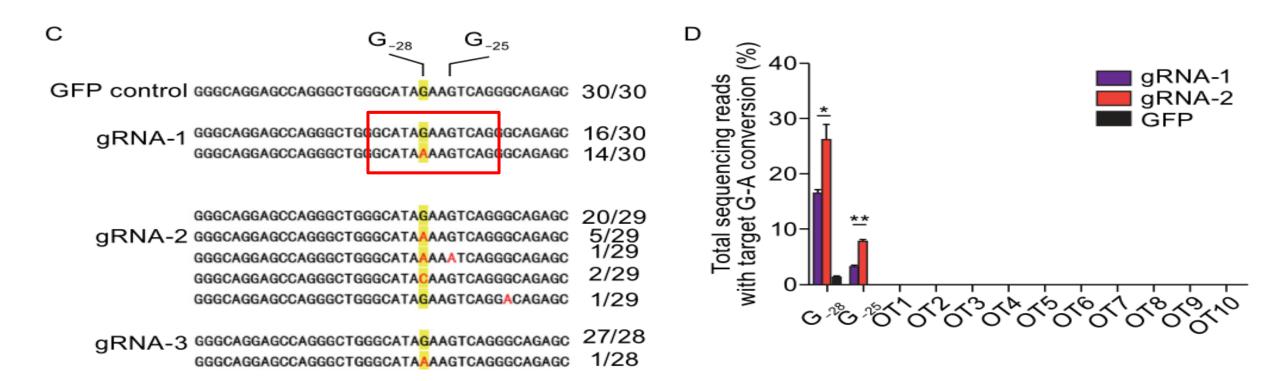
#### **β-thalassemia:**

Mostly caused by **point mutations**, there are more than 100 mutations in *HBB* gene.

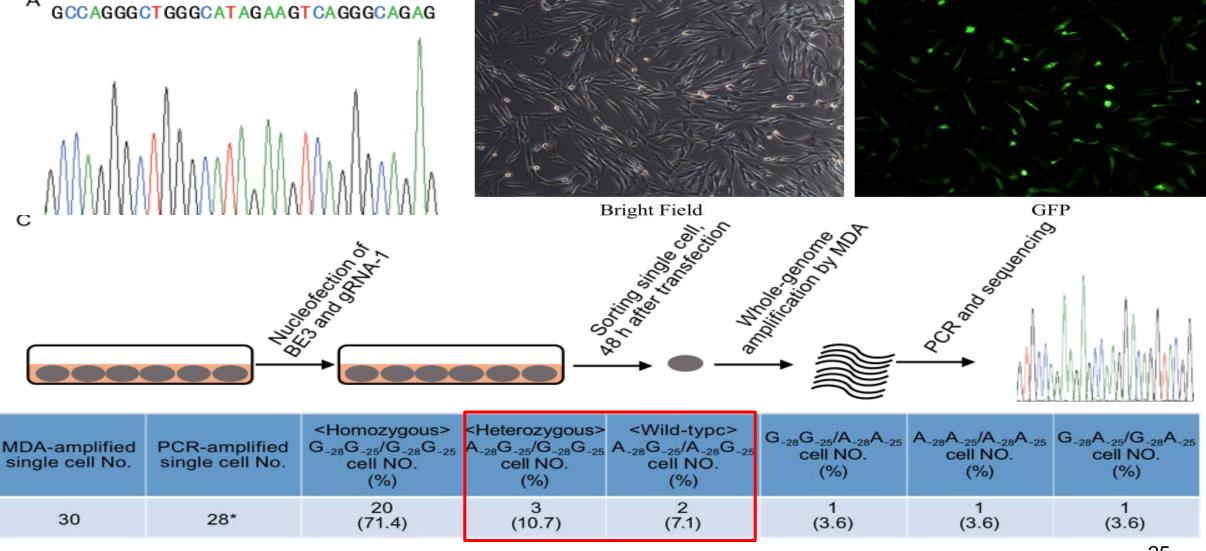
Can we repair β-thalassemia in Human Embryo with CBE?


<sup>\*, #</sup> Pups were cannibalized by the mother (2 for \* and 1 for #).




### β-thalassemia in Memorial Hospital, Sun Yat-sen University

| HBB Gene      | No. Patiens | Ratio (%) |
|---------------|-------------|-----------|
| 41-42M/N      | 151         | 6.7       |
| 654M/N        | 103         | 4.6       |
| -28M/N(A>G)   | 49          | 2.2       |
| 17M/N         | 30          | 1.3       |
| CD17M/N       | 12          | 0.5       |
| βEM/N         | 9           | 0.4       |
| 41-42M/41-42M | 8           | 0.4       |
| 71-72M/N      | 5           | 0.2       |
| 27/28M/N      | 4           | 0.2       |
| -29M/N        | 4           | 0.2       |
| 14-15M/N      | 2           | 0.1       |
| 41-42M/654M   | 2           | 0.1       |
| 43M/N         | 2           | 0.1       |
| 654M/17M      | 2           | 0.1       |


#### Correcting HBB –28 (A>G) mutation in human cell line.

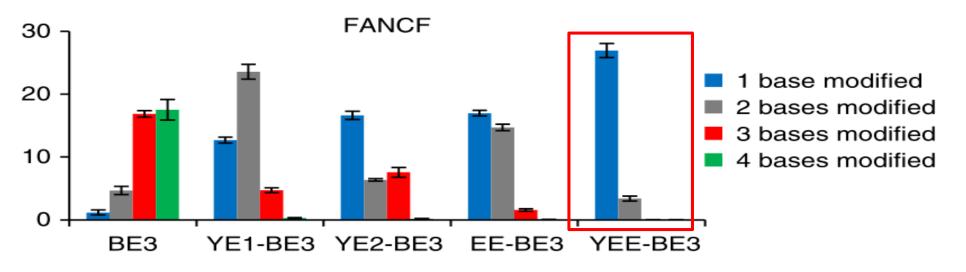


#### Precise repairing of *HBB* –28 (A>G) mutation



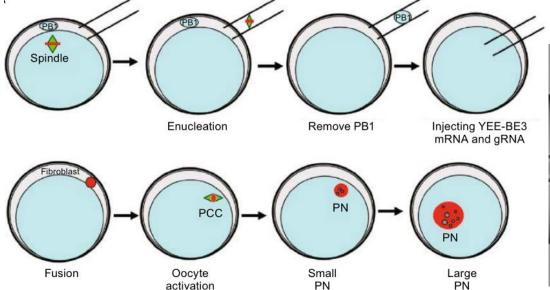
# Correcting –28 mutation in primary skin fibroblast cells of a β-thalassemia patient




#### **Precise Editing a Single-base with YEE-BE3**

#### LETTERS

#### nature biotechnology


Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions

Y Bill Kim<sup>1,2</sup>, Alexis C Komor<sup>1,2</sup>, Jonathan M Levy<sup>1,2</sup>, Michael S Packer<sup>1,2</sup>, Kevin T Zhao<sup>1,2</sup> & David R Liu<sup>1-3</sup>



# Effective HBB -28 (A>G) mutation repair in cloned human embryos by YEE-BE3

Cloned homozygous HBB -28 (A>G) human embryos





| Survived<br>embryo No.<br>(Injected<br>embryo No.) | Activated embryo No. | Harvested embryo No. | Total<br>blastomere No. | The state of the s |     |              |            | <wild-type> A<sub>-28</sub>G<sub>-25</sub>/A<sub>-28</sub>G<sub>-25</sub> blastomere No. (%)</wild-type> |
|----------------------------------------------------|----------------------|----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|------------|----------------------------------------------------------------------------------------------------------|
| 28<br>(35)                                         | 24                   | 20#                  | 73                      | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48* | 37<br>(77.1) | 3<br>(6.3) | 8<br>(16.7)                                                                                              |

# The world's first report of human embryos altered by Base Editor.

Protein Cell DOI 10.1007/s13238-017-0475-6



**Protein & Cell** 

#### SHORT ARTICLE

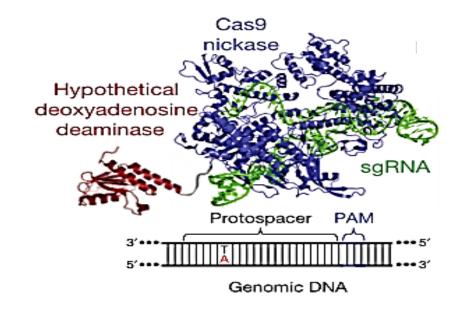
## Correction of β-thalassemia mutant by base editor in human embryos

Puping Liang<sup>1,2</sup>, Chenhui Ding<sup>2</sup>, Hongwei Sun<sup>1</sup>, Xiaowei Xie<sup>1</sup>, Yanwen Xu<sup>2</sup>, Xiya Zhang<sup>1</sup>, Ying Sun<sup>1</sup>, Yuanyan Xiong<sup>1</sup>, Wenbin Ma<sup>1</sup>, Yongxiang Liu<sup>2</sup>, Yali Wang<sup>2</sup>, Jianpei Fang<sup>3</sup>, Dan Liu<sup>4</sup>, Zhou Songyang<sup>1,2,4⊠</sup>, Canquan Zhou<sup>2⊠</sup>, Junjiu Huang<sup>1,2⊠</sup>

This first study was a successful proof of principle that the base-editing technique can be used to correct a disease mutation in a human embryo.

*--Nature* 2017

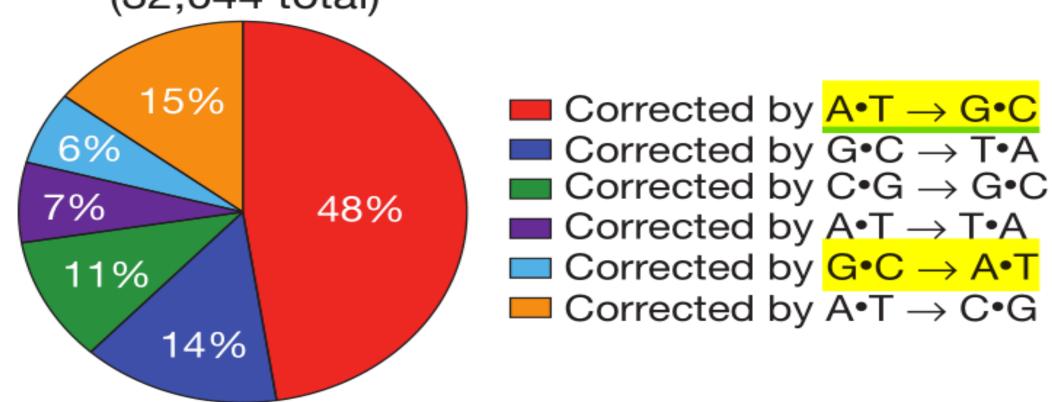
<sup>&</sup>lt;sup>1</sup> Key Laboratory of Gene Engineering of the Ministry of Education, Guangzhou Key Laboratory of Healthy Aging Research


#### Adenosine Base Editor (ABE)

### **ARTICLE**

doi:10.1038/nature24644

# Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage


Nicole M. Gaudelli<sup>1,2,3</sup>, Alexis C. Komor<sup>1,2,3</sup>†, Holly A. Rees<sup>1,2,3</sup>, Michael S. Packer<sup>1,2,3</sup>†, Ahmed H. Badran<sup>1,2,3</sup>, David I. Bryson<sup>1,2,3</sup>† & David R. Liu<sup>1,2,3</sup>



 $\mathbf{A} \cdot \mathbf{T}$  to  $\mathbf{G} \cdot \mathbf{C}$ 

#### To be continue ······

Pathogenic human SNPs (32,044 total)



Nicole m. Gaudelli et al. Nature 2017

#### Human Genome Editing: Science, Ethics, and Governance



2017/02/14

#### Condemning the reproductive application of gene editing on human germline

Committee of Genome Editing, Genetics Society of China Chinese Society for Stem Cell Research

Nov. 27th, 2018

On Nov. 26th, 2018, Jiankui He, associate professor from Southern University of Science and Technology, announced that two babies with edited *CCR5* gene have been born in China, and he believed that this genetic modification would render these babies immune to HIV infection. While more solid facts of this experiment remain to be disclosed and the veracity of such claims are yet to be ascertained, we strongly condemn any application of gene editing on human embryos for reproductive purposes. Such intervention is against the law, regulation, and medical ethics of China. Moreover, it violates internationally accepted ethical principles regulating human experimentation and human rights law.

### Thanks!

周灿权 教授 松阳洲 教授 徐艳文 教授 方建培 教授 梁普平 副教授 丁晨晖 副研究员 张曦亚 博士 孙宏伟 博士生等

