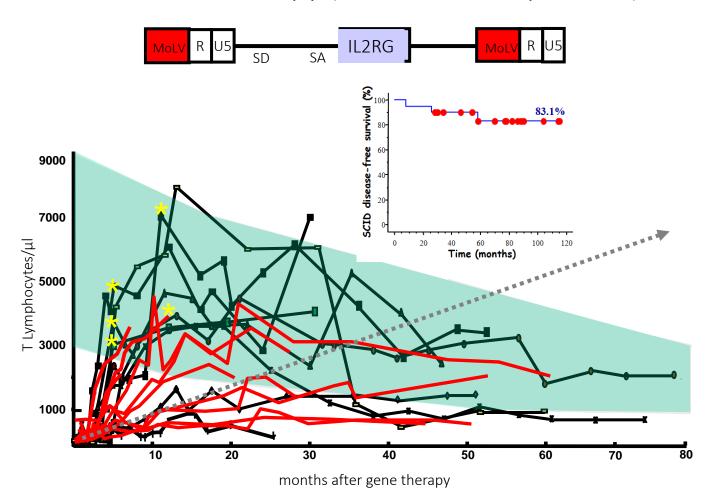
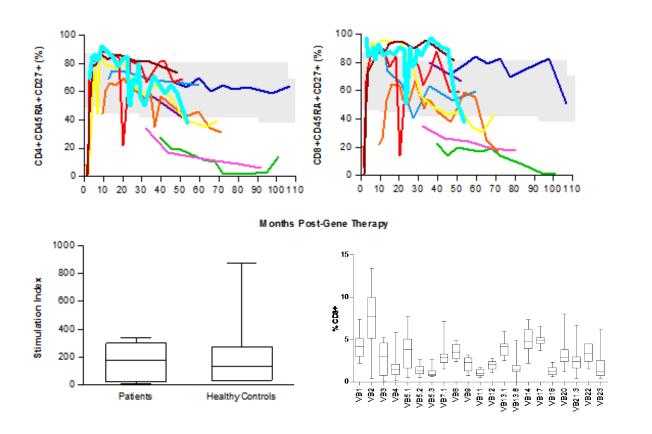
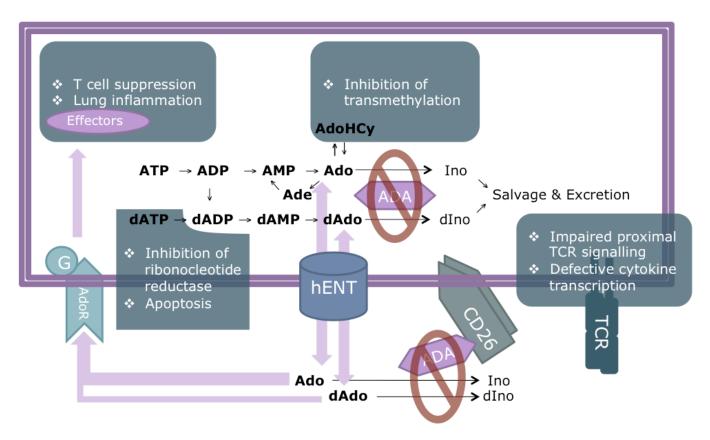


Disclosures....


Capital Partners

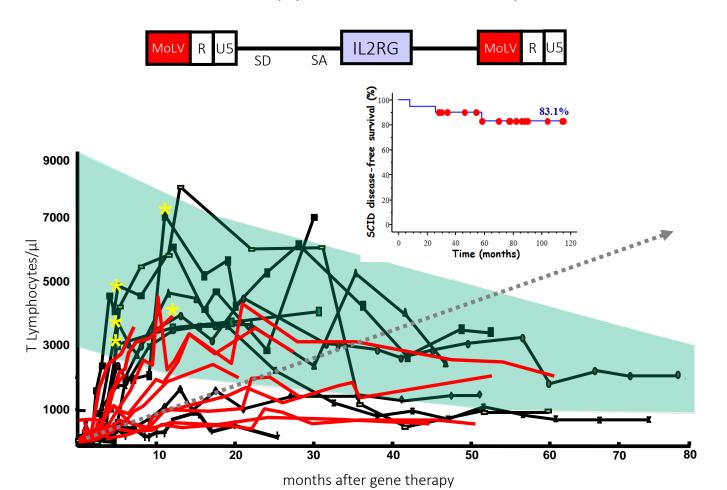
Founder and consultant at Orchard Therapeutics. Consultant for Rocket Pharmaceuticals, Generation bio, and 4Bio


Primary immunodeficiency: a rare disease paradigm....


SCID-X1 Gene Therapy (UK/France, 20 patients)

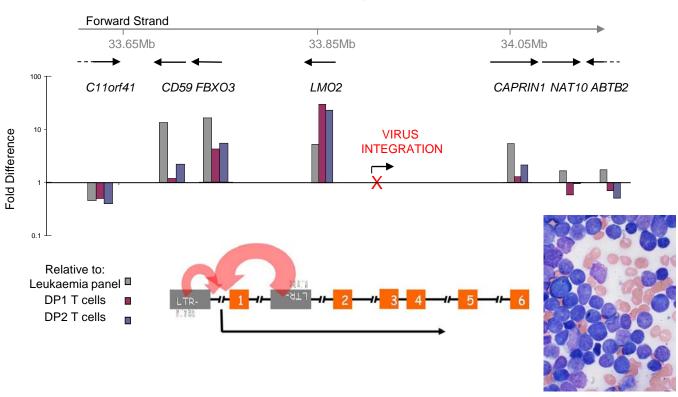
SCID-X1 gene therapy, (UK 10 patients, 10-17yr fu)...

ADA-SCID: disease pathophysiology...


Summary of ADA-Deficient SCID Patients Retroviral Vectors, <u>Myelosupressive</u> Conditioning

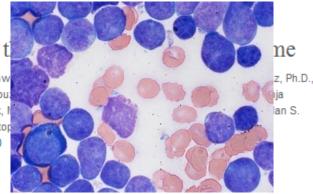
Center	# Pts	F/U (yrs) ¹	Off Enzyme	Survival	DFS ²
Milan	18	0.8 – 11.5	15/18	100%	83.3%
London	8	0.5 – 7.5	4/8	100%	50%
CHLA-NHGRI	6	3–7	3/6	100%	50%
UCLA-NHGRI	10	0.2-4	9/10	100%	90%
TOTAL	42	0.2 – 11.5	31/42	100%	73.8%

¹ As of January 2013


 $^{^{2}}DFS = Alive without BMT or PEG-ADA re-start$

SCID-X1 Gene Therapy (UK/France, 20 patients)

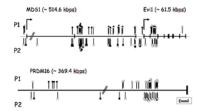
Enhancer-mediated insertional mutagenesis...

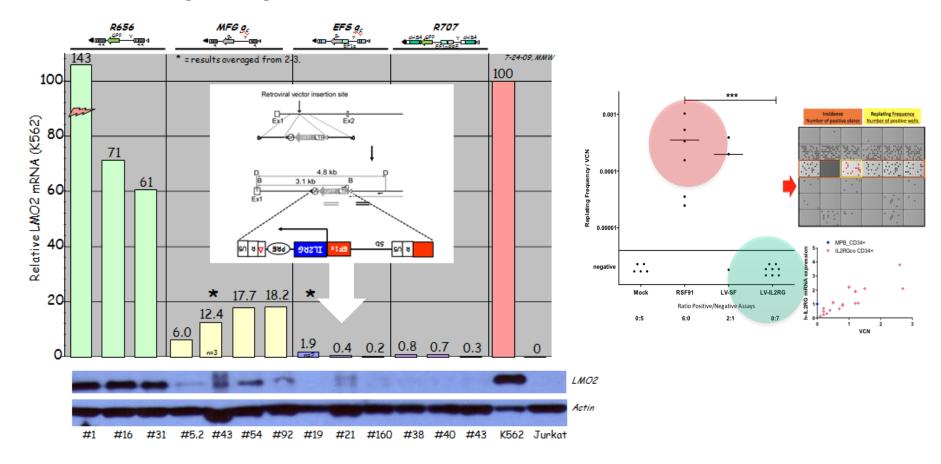


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

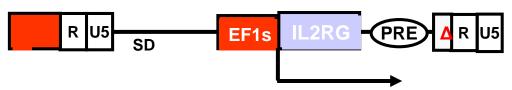
Stem-Cell Gene Therapy for t


Kaan Boztug, M.D., Manfred Schmidt, Ph.D., Adrian Schw Ricardo A. Dewey, Ph.D., Marie Böhm, M.Sc., Ali Nowrous Naundorf, M.Sc., Klaus Kühlcke, Ph.D., Rainer Blasczyk, Orange, M.D., Ph.D., Christof von Kalle, M.D., and Christop N Engl J Med 2010; 363:1918-1927 November 11, 2010


RESEARCH ARTICLE | GENE THERAPY

Gene Therapy for Wiskott-Aldrich Syndrome— Long-Term Efficacy and Genotoxicity

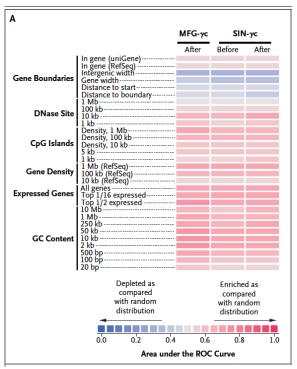
Christian Jörg Braun^{1,*}, Kaan Boztug^{2,*,†}, Anna Paruzynski^{3,*}, Maximilian Witzel^{1,*}, Adrian Schwarzer^{2,4}, Michael Rothe⁴, Ute Modlich⁴, Rita Beier², Gudrun Göhring⁵, Doris Steinemann⁵, Raffaele Fronza³, Claudia Regina Ball^{3,6}, Reinhard Haemmerle⁴, Sonja Naundorf⁷, Klaus Kühlcke⁷, Martina Rose⁸, Chris Fraser⁹, Liesl Mathias¹⁰, Rudolf Ferrari¹¹, Miguel R. Abboud¹², Waleed Al-Herz¹³, Irina Kondratenko¹⁴, László Maródi¹⁵, Hanno Glimm^{3,6}, Brigitte Schlegelberger⁵, Axel Schambach⁴, Michael Heinrich Albert¹, Manfred Schmidt3,*, Christof von Kalle3,6,* and Christoph Klein1,*,‡

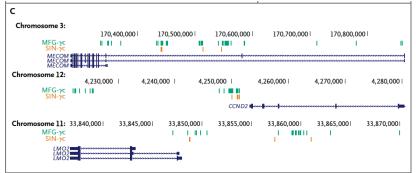

Measuring mutagenesis in vitro....

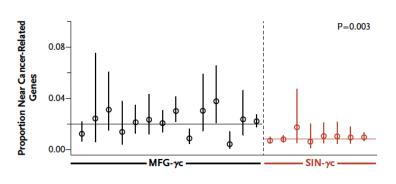
ORIGINAL ARTICLE

A Modified γ -Retrovirus Vector for X-Linked Severe Combined Immunodeficiency

S. Hacein-Bey-Abina, S.-Y. Pai, H.B. Gaspar, M. Armant, C.C. Berry,
S. Blanche, J. Bleesing, J. Blondeau, H. de Boer, K.F. Buckland, L. Caccavelli,
G. Cros, S. De Oliveira, K.S. Fernández, D. Guo, C.E. Harris, G. Hopkins,
L.E. Lehmann, A. Lim, W.B. London, J.C.M. van der Loo, N. Malani, F. Male,
P. Malik, M.A. Marinovic, A.-M. McNicol, D. Moshous, B. Neven, M. Oleastro,
C. Picard, J. Ritz, C. Rivat, A. Schambach, K.L. Shaw, E.A. Sherman,
L.E. Silberstein, E. Six, F. Touzot, A. Tsytsykova, J. Xu-Bayford, C. Baum,
F.D. Bushman, A. Fischer, D.B. Kohn, A.H. Filipovich, L.D. Notarangelo,
M. Cavazzana, D.A. Williams, and A.J. Thrasher

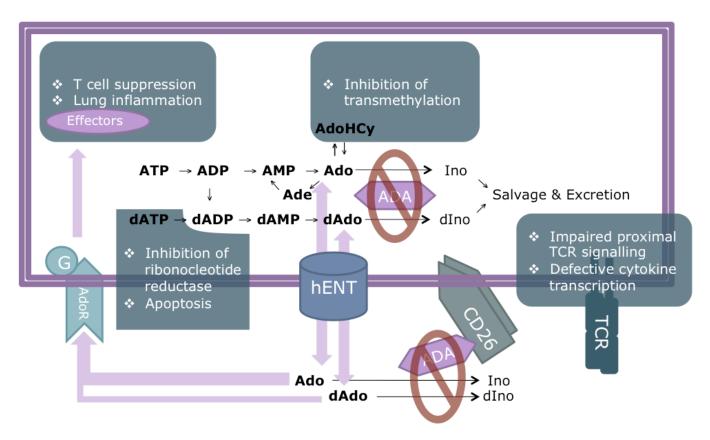


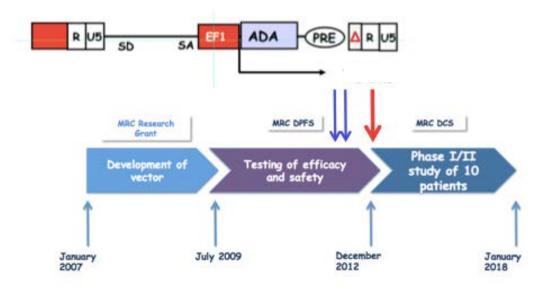

Parallel trials in US (Boston, Cincinnati, Los Angeles), Paris, London Interim efficacy and safety analysis of the first 9 patients enrolled Median follow-up 29.1 months (12.1-38.7)


No myelosuppressive conditioning

Insertion near lymphoid proto-oncogenes are far less frequent....

Frederic Bushman, University of Pennsylvania





Hacein-Bey-Abina, Pai et al, NEJM 2014

ADA-SCID: disease pathophysiology...

Phase I/II, open-label, non-randomised, trial to assess the safety and efficacy of EF1αS-ADA lentiviral vector mediated gene modification of autologous CD34+ cells from ADA-deficient individuals

UCL-GOSH and UCLA: enrolled >50 patients August 2018

LV gene therapy for ADA SCID (OTL101) – cumulative data

Cohort size	48 patients treated (follow-up of 1-60 months) as of June 2017
Survival	100% survival
Immunological and metabolic recovery	 Immunological and metabolic recovery in 47/48 patients 47/48 patients with > 6 months follow-up off ERT
Patients off immunoglobulin replacement therapy	majority with > 18 months follow-up off IgRT
Risk of leukaemia	No evidence of persistent clonal dominance

CD34+ cells transduced with lentiviral vector, fresh and cryopreserved formulations

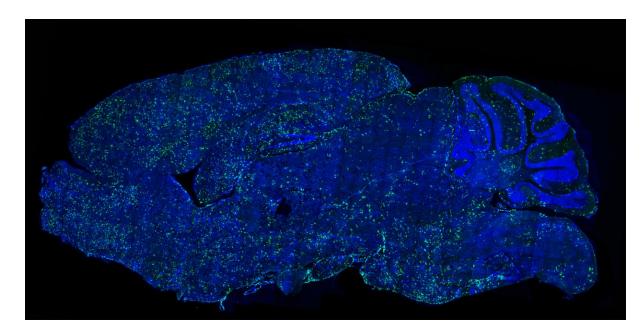
Choice of therapies....

	Allogeneic HSCT (MUD / haploidentical)	Chronic ERT (Adagen®)	Ex-vivo autologous GT
Single intervention	✓	X	✓
Survival	• 67% (1-year) MUD (#1) • 43% (1-year) haploidentical (#1)	+/- short term X long-term 78% survival at 20 years (#1)	100% survival (#3)
Long-term immune reconstitution	✓	+/- Declining immune function from 2 years post initiation or ERT	✓
Morbidity & Safety profile	Risk of acute and chronic graft-versus host disease Risk of rejection Conditioning-related infertility	No risk of GvHD / rejection Overall favourable safety profile Frequent monitoring required Risk of immunogenicity	No risk of GvHD / rejection Overall favourable safety profile

Broadening HSC gene therapy landscape......

Disease	Current phase	
SCID conditions		
LV ADA SCID	Phase I/II - registration	
LV SCID-X1	Phase I/II - registration	
RAG 1	Phase I/II in preparation	
RAG2	Proof of concept	
Artemis	Phase I/II in preparation	
Other immunodeficiencies		
Wiskott-Aldrich Syndrome	Phase I/II - registration	
X-linked chronic granulomatous disease	Phase I/II	
AR Chronic Granulomatous Disease	Proof-of-concept; Phase I/II in prep	
Perforin deficiency	Proof-of-concept; Phase I/II in prep	
Munc 13-4 deficiency	Proof-of-concept	
X-linked lymphoproliferative disease	Proof-of-concept	
Leukocyte Adhesion deficiency	Proof-of-concept; Phase I/II in prep	
X-linked agammaglobulinaemia	Proof-of concept	
Metabolic Diseases		
X-linked adrenoleukodystrophy	Phase I/II - registration	
Metachromatic leukodystrophy	Phase I/II - registration	
MPS-I – Hurler syndrome	Phase I/II	
MPS-II – Hunter syndrome	Pre clinical development	
MPS-IIIA – Sanfilippo A	Proof-of concept	
MPS-IIIB – Sanfilippo B	Proof-of concept	
GLD – Krabbe disease	Pre clinical development	
INCL – Batten's disease	Pre clinical development	
Gaucher disease	Proof-of-concept	
Fabry's disease	Phase I/II	
Pompe disease	Proof-of-concept	
Haemoglobinopathies		
β-thalassaemia	Phase I/II - registration	
Sickle Cell Disease	Phase I/II	
Bone Marrow Failure Syndromes		

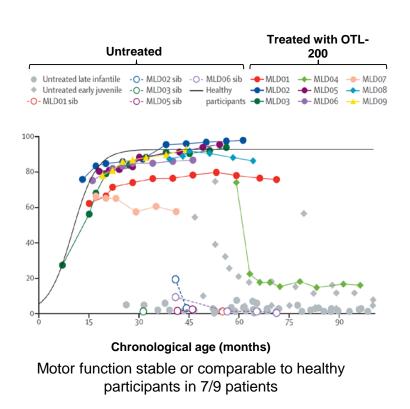
~200 patients and rising

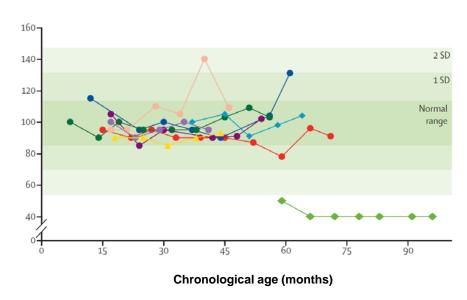

Clinical phas

HSC gene therapy: delivery of proteins to other tissues Potential to treat diseases with CNS manifestations

Distribution of genetically modified cells in mouse brain

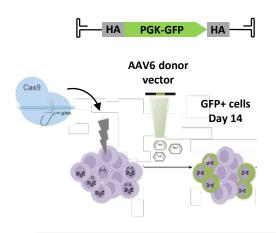
HSC-derived myeloid cells migrate into brain across BBB

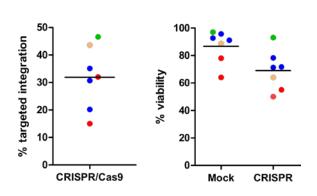

Source: Capotondo et al. PNAS 2012;109:15018-15023


Brain of a wildtype mouse transplanted with GFP-LV transduced HSPCs after Busulfan conditioning

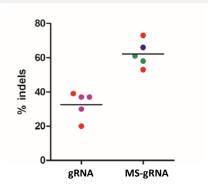
Green = GFP (green fluorescent protein); blue = nuclei staining

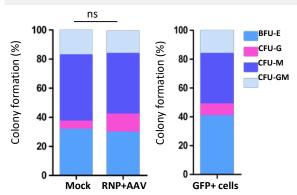
Morphology of the ramified parenchymal cells resemble microglia at different stages of maturation (source: A. Biffi)

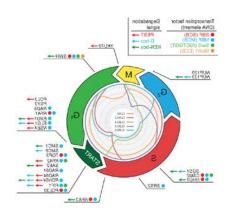

MLD: preservation of motor and cognitive function (Biffi et al.)



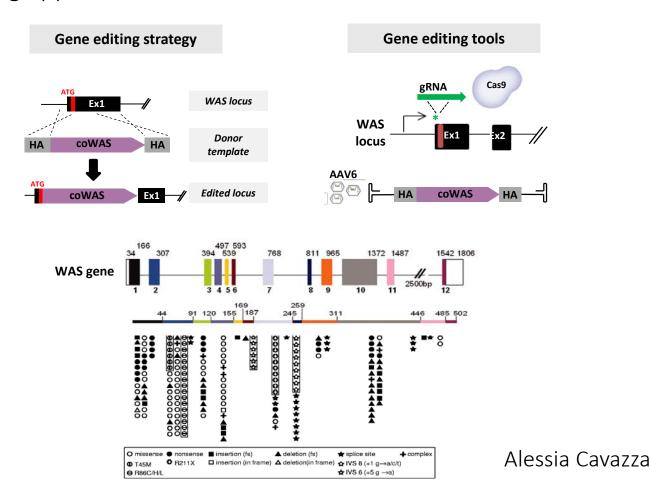
Cognitive function within normal range in 8/9 patients

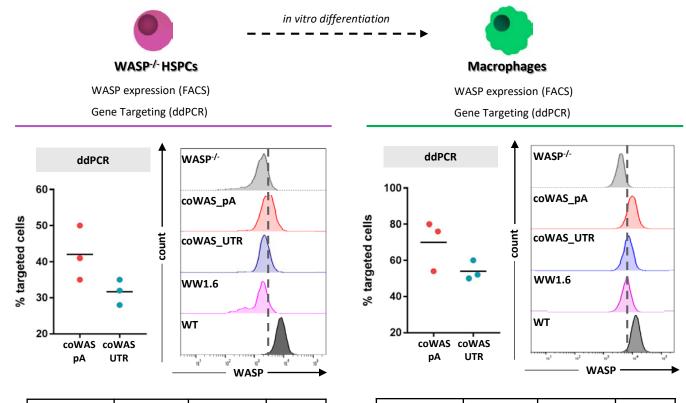

Gene editing: efficient targeting of HSPCs?...


PGK-GFP knock-in in HSPCs

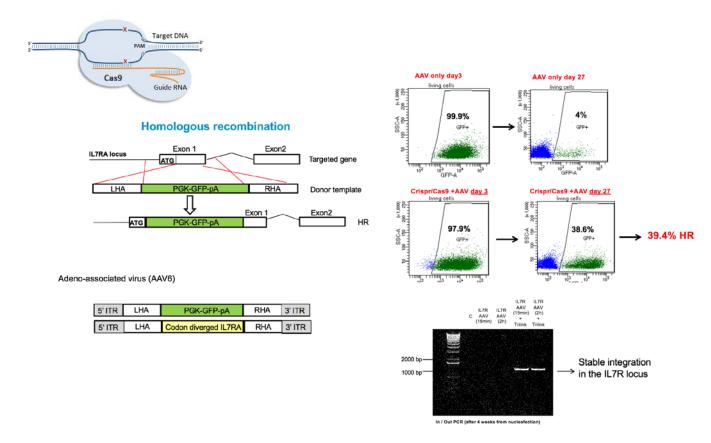

Genome editing in HSPCs

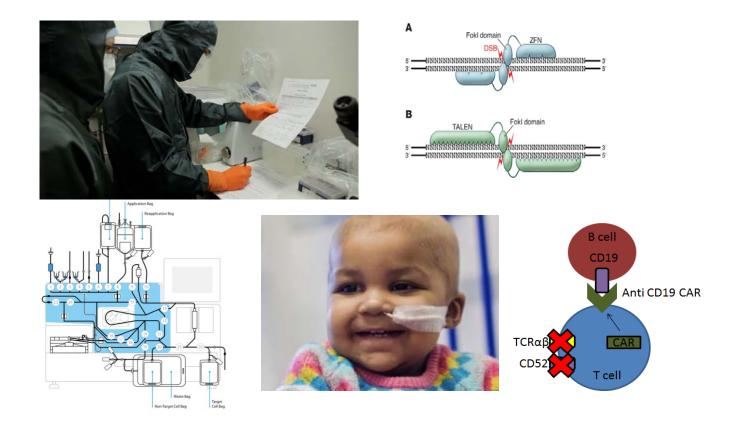
Colony forming efficiency in edited HSPCs



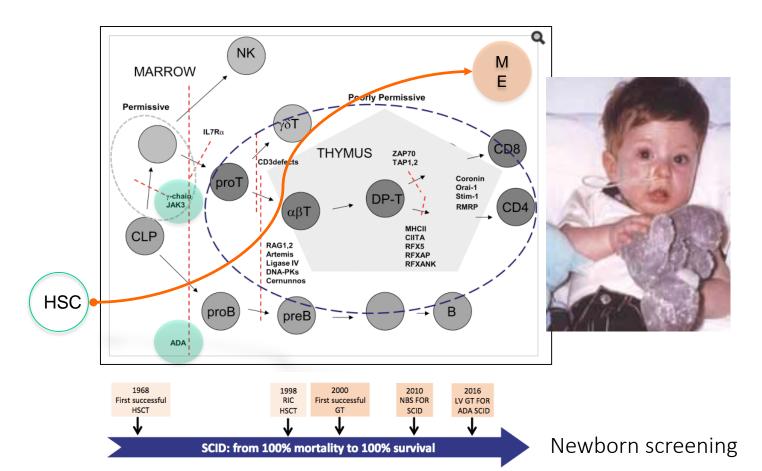


Gene editing approaches for WAS...


Successful editing of WAS HSPCs...


	coWAS_pA	coWAS_UTR	WW1.6
mean WASP %	40	25	5
Copy Number	1	1	1.2

	coWAS_pA	coWAS_UTR	WW1.6
mean WASP %	75	45	20
Copy Number	1	1	3.5


Gene editing and repair: CRISPR Cas9 IL7Ra SCID.....

Efficient gene editing in allogeneic T cells (Qasim, Veys...)....

Primary immunodeficiency: a rare disease paradigm....

Many thanks to... Institute of Child Health **Great Ormond Street Hospital** Collaborators David William Giorgia Santilli Paul Veys Alessia Cavazza Persis Amrolia Luigi Notarangelo Fang Zhang Kanchan Rao Sung-Yun Pai Kimberly Gilmour Graham Davies Lisa Filipovich Sue Swift Waseem Qasim Chris Baum Claudia Montiel Equiha Austen Worth Marlene Carmo Christof von Kalle Jinhua Xu-Bayford Christine Rivat Katie Snell Manfred Schmid Ben Houghton Nursing and support staff Rick Bushman Claire Booth Stuart Adams Marina Cavazzana Karen Buckland Cecile Duret Salima Hacein-Bey Harvinder Hara Don Kohn Diego Leon Denise Carbonaro Sarracino Alison Niewrowska Manuel Grez Anne Galy **Bobby Gaspar** Fulvio Mavilio Sabine Charrier Juan Bueren Paula Rio

MRC Council

Medical Research

Orchard therapeutics

California Institute of Regenerative Medicine (CIRM) NHLBI GTRP; NIAID Intramural Program