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• Why somatic cell gene editing for Duchenne?
• Dire clinical need
• Limited therapeutic options
• ~30% of DMD cases are spontaneous mutations 

and thus germline editing not applicable
• Cell delivery
• Gene delivery
• Full-length gene too large for delivery
• Resident progenitor cell pool
• Multinucleated target cells
• Correctable by NHEJ
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Genome Editing for Duchenne Muscular Dystrophy

WT dystrophin protein
WT dystrophin

46 47 49 50 51 52 53 54484544 5655

Deletion of exons 48-50
DMD – out of frame, 
no protein

BMD – truncated, 
partially functional protein

Deletion of exons 48-51; applicable to ~13% patients

• Exon 51 skipping can correct 13% of DMD mutations

Ousterout et al. Molecular Therapy (2013), Molecular Therapy (2014), 
Nature Communications (2015)
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out-of-frame stop codon

CR1 CR2 CR5

% deleted: 13.6

unmodified
deletions

GCTTTGATTTCCCTAGGG..//..CCCACCAGTTCTTAGGCAA
GCTTTGATTTCC..................AGTTCTTAGGCAA (x2)
GCTTTGATT.........................CTTAGGCAA
GCTTTGATTTCC........(+41bp).......CTTAGGCAA

Intron 51Intron 50
CR1
PAM

CR5
PAM

CR1/5 treated
genomic DNA

TCTTAACCATTACCATAG..//..CCCACCAGTTCTTAGGCAAC

TCTTAACCATTACCATAG............AGTTCTTAGGCAAC(x2)

TCTTAACCATTACCA......A........AGTTCTTAGGCAAC

TCTTAACCATTACCATAG.............GTTCTTAGGCAAC

CR2
PAM

CR5
PAM Intron 51Intron 50

Intron 50 Intron 51

Intron 50 Intron 51
CR2/5 treated
genomic DNA

10.5

Genomic DNA

Ousterout et al. Nature Communications (2015)
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mRNA

Δ48-50
Δ48-51

Exon 47 Exon 52

Western blot

Dystrophin

GAPDH

Editing the Dystrophin Gene with CRISPR/Cas9

Deletion of exon 51 from the 
genome results in restored 

dystrophin expression

Ousterout et al. Nature Communications (2015)
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HEK293T
hDMD Mbs

Δ45-55
Δ48-50

GAACCAAACCCACT..//..CCTCGATAGGGGATAA
GAACCAAACCCACT............TAGGGGATAA (x5)

Intron 55Intron 44
CR6
PAM

CR36
PAM

Dystrophin
GAPDH

Intron 44 Intron 55

Exon 44 Exon 56

Exon 45-55 deletion 
(336,380 bp)

Exon 51 deletion 
(~800-1050 bp)

• Exon 51 skipping can correct 13% of DMD mutations 
• Skipping 45-55 can correct 40-62% of DMD mutations (Aartsma-Rus et al., Hum Mutat 2009)
• Multi-exon skipping in preclinical development (Aoki et al., PNAS 2012)

Genomic DNA

mRNA

Protein

Editing the Dystrophin Gene with CRISPR/Cas9

Ousterout et al. Nature Communications (2015)
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Genome Editing to Treat the mdx Mouse Model of DMD

Human DMD Gene mdx Mouse Model of DMD

21 22 23 24 25

NHEJ

46 47 51 52

46 47 52

NHEJ

21 22 24 25

TAA

Nelson et al. Science (2016)
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Human DMD Gene mdx Mouse Model of DMD

21 22 23 24 25

NHEJ

Local Injections Into Tibialis AnteriorAAV Viral Vector Design
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by Genome Editing
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Restoration of Dystrophin Expression
by Genome Editing

Nelson et al., Science (2016)

specific 
twitch force (Pt)

specific 
tetanic force (Pt) Repeated eccentric contraction

w/ Dongsheng Duan (U Missouri)

wild type mdx mdx + AAV-CRISPR
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Genome Editing for Duchenne Muscular Dystrophy

Enthusiasm predicated on:

1. Potential to translate to human disease
- How to model human mutations?

2. Long-term stability of editing
- Most study outcomes at 2-8 weeks post-treatment

3. Which cells are edited and do they persist?
- Most studies assessing bulk tissues

4. Tolerable immune response
- Most studies ignore immune response

5. Destiny and safety of delivery systems
- Most studies do not assess vector stability 
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Humanized Mouse Model of DMD
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hDMD/mdx mouse (t’Hoen et al., JBC 2008)

Germline CRISPR/Cas9 editing (𝚫𝚫52)

Robinson-Hamm et al., unpublished
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47 49 50 53 5448 5655

AAV-CRISPR editing (𝚫𝚫51)

CRISPR/Cas9

Δ52/MDXhDMD/MDX

NUCLEI
DYSTROPHIN

Systemic AAV9
(4-8 x 1012 vg/mouse)
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Exon 51 Deletion In 
Heart mRNA
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adult

Treated as
neonate

LOD=0.17%
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Persistence of Editing in Skeletal and Cardiac Muscle

Significant increase in editing frequency from 8 weeks to 1 year
Nelson et al., in review



Genome Editing for Duchenne Muscular Dystrophy

Enthusiasm predicated on:

1. Potential to translate to human disease
- How to model human mutations?

2. Long-term stability of editing
- Most study outcomes at 2-8 weeks post-treatment

3. Which cells are edited and do they persist?
- Most studies assessing bulk tissues

4. Tolerable immune response
- Most studies ignore immune response

5. Destiny and safety of delivery systems
- Most studies do not assess vector stability 



Satellite Cells are the Stem Cells of Skeletal Muscle

Does AAV transduce 
satellite cells in vivo?

Does CRISPR edit satellite 
cells in vivo?

Does satellite cell editing 
facilitate long-term 

dystrophin restoration?



AAV-CRISPR Gene Editing of Satellite Cells

Kwon et al., unpublished
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Host Immune Response to CRISPR/Cas9

⍺-Cas9 antibody response
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Host Immune Response to CRISPR/Cas9

• ⍺-Cas9 response following treatment of adults but not neonates
• Used ubiquitous promoter – tissue-restricted promoters may help

⍺-Cas9 antibody response ⍺-Cas9 T cells
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Unbiased Detection of Genome Editing Events



Unbiased Detection of Genome Editing Events

Nelson et al., unpublished

Large deletions (multi-kilobase) in DMD locus 
in the liver of AAV9-CRISPR treated mice
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Unexpectedly high 
levels of AAV 
integrations at 
target site
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Detection of AAV Integration at Off-Target Sites

Nelson et al., unpublished

AAV integration at CRISPR off-target sites 
not identified by traditional methods



Summary
• Genome editing for DMD typically focuses on removing gene 

segments to restore functional, truncated dystrophin
• In vivo CRISPR-based genome editing restores long-term 

dystrophin expression in many studies with no reported 
adverse effects

• Potential for editing adult stem cells of skeletal muscle
• Robust anti-Cas9 host immune response that resolves 

without intervention 
• Unintended genomic outcomes, including AAV integration, 

into on-target and off-target sites
• Additional research required to understand implications 

of immune response, long-term presence of delivery 
vectors, and alternative genome modifications
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