EXPLORATORY ADVANCED RESEARCH

Presentation for the Research and Technology Coordinating Committee

December 11, 2019

Presentation Outline

- I. Program Background
- II. EAR Program Examples
- III. Discussion

Program Authority

"...Develop potentially transformational solutions to improve the durability, efficiency, environmental impact, productivity, and safety aspects of highway and intermodal transportation systems."

23 USC Sec. 502

Program Processes

Initial stage investigations

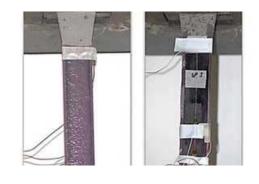
Investing in new research

Transitioning results

EAR Program Status

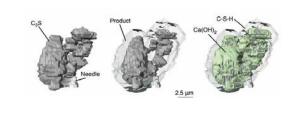
- 200+ Initial stage investigations
 - 35 resulted in research investments
- Nine solicitations
 - 97 projects (26 active); \$96M federal, \$28M match
 - 72 academic institutions, 47 businesses, 13 state/ local agencies, 9 federal labs
- Five rounds of handoffs

EAR Program Success Stories



Truck Platooning

Structural Sensors


Computer Vision

Assistive Technology for Vulnerable Pedestrians

Supplementary, **Alternative Cementitious Materials**

Hardware-in-the-Loop

Falling Short of Success

- Misunderstood or miscommunicated potential
- Unable to overcome key research challenges
- Unable to transition results fully

Discussion Questions

As part of initial stage investigations,

- How can the EAR Program become more effective at seeking the right set of topics and not miss important topics? How should the Program identify topics to be considered?
- How can the Program find and engage the right researchers?
- What ways can the Program improve the initial stage investigations process?

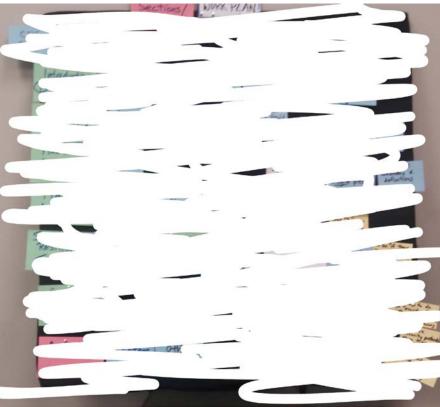
As part of investing in research,

- How does the Program tell if it is funding the right projects?
- What are the right acquisition mechanisms to fund research?

As part of transitioning results,

- How can the Program engage the right transition partners?
- What are the right methods for the Program to use to transition projects?
- What ways can the Program enhance how results are transitioned?

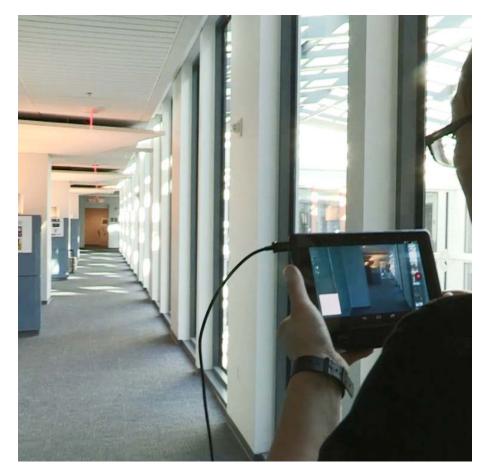
As part of **communications**,


- How well is the Program identifying the critical audiences? Who should be the Program's critical audience?
- What are the right messages for the Program to present to critical audiences? What are the Program's three core messages?
- What are the right media for the Program to use to reach critical audiences?

What if You Had a Clean Slate?

December 11, 2019 Presentation for the RTCC 12

Truck Platooning


- Why: Potential early adoption of connected vehicle technology
- Results: Demonstrated viability on I-66 in Virginia, track testing of fuel savings, simulation of improved mobility for all vehicles

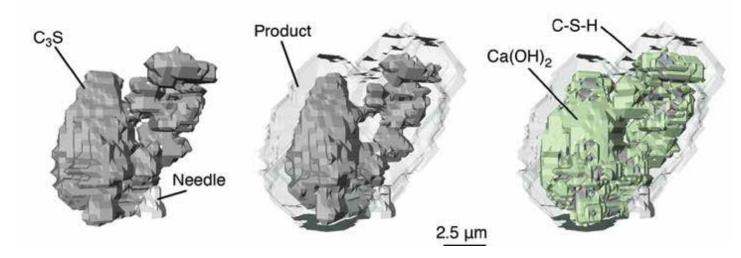
Assisting Vulnerable Pedestrians

- Why: Vulnerable pedestrians can benefit from new technology
- Results: Demonstrated ability for a blind pedestrian to navigate outdoors and indoors

Structural Sensor Systems

Sensing layer only

'Structural-sensing' layer


- Why: Inspectors see
 what's on the surface;
 sensors can "see" inside
 but are hard to install
- Results: Demonstrated benefits from low power, wireless sensors in the lab then on bridges in DE, MI, NJ, PA

15

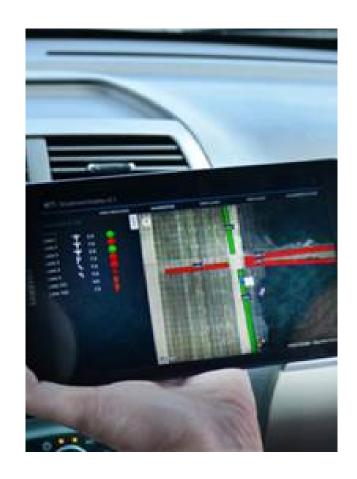
Access to New Materials

- Why: Traditional construction materials are a limited resource
- Results: Increase understanding and predictive reliability of a larger palette of materials for pavements, structures

Wireless Camera Systems for Environmental Monitoring

- Why: Increase access to image data for wildlife management
- Results: System in use in CA, CO, NV

Computer Vision Tools


- Why: Require new methods to study 1 million hours of naturalistic driving video images
- Results: Created tools now used in the FHWA Safety Training and Analysis Center (STAC)

Hardware-in-the-Loop

- Why: Safer, lower-cost method for connected vehicle research
- Results: Demonstrated successful interaction of a physical vehicle with virtual vehicles in different scenarios

