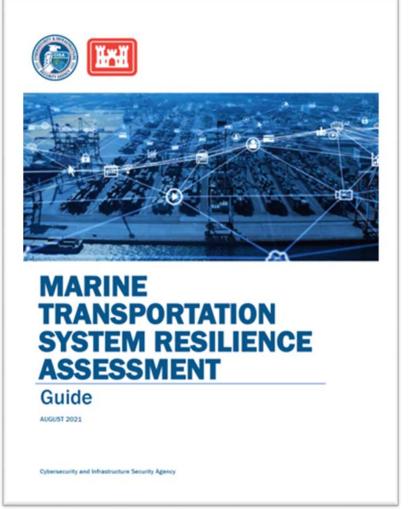
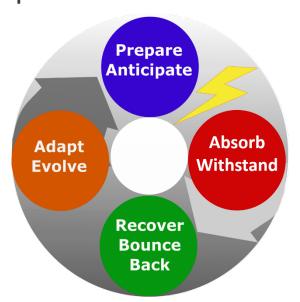


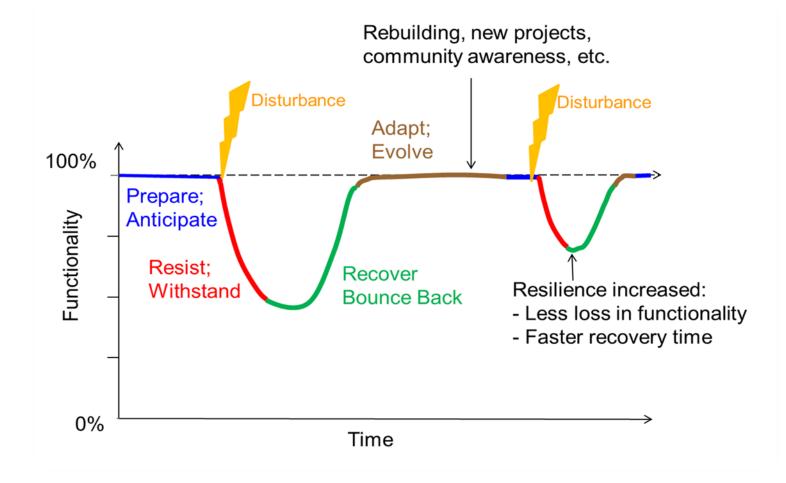
Port and Marine Transportation System Resilience Guide: using available resources for making better decisions

- USACE ERDC Lead: Katherine Chambers
 Coastal and Hydraulics Laboratory/ Coastal Processes Branch
- CISA Lead: Jevon Daniel
 Infrastructure Development and Recovery Branch
- Investing in Transportation Resilience: A Framework for Informed Choices Workshop. June 16-17, 2022.

Joint Agency Marine Transportation System Resilience
Guide






Status: Pre-decisional, preliminary findings. CISA/USACE are working on final MTS Resilience Guide with planned release at the end of FY22.

Functional Approach to Resilience

Goal: preserve the functions of a system of assets. In the case of the MTS - moving cargo and people

Problem: Resilience Resource Overload!

Research Need:

→ A disparity exists between published resources on resilience and usable/accessible information for decision support and project planning.

Assessing Interdependencies

Hazard & Impact Modeling and Simulation

Analyzing Supply Chain Risks

MTS Resilience Assessment Guide

- Outline a process for assessing resilience
- Lead users to relevant datasets, methods, and tools according to their scope, resources, and objectives

ID & Organize Assessment Methods

Compile 100+ references, methods, guidebooks, and data resources.

Recommend and organize according to scope, level of effort and resilience assessment objectives

Resource Name	Scope	Tier	Resource Type	Information Available	Tool Review	Developers and Partners
ADCIRC Model	All scopes	3	Generic Model	Nationwide	useful	UNC
ADCIRC-Surge Guidance System (ASGS)	All scopes	3	Tool	Nationwide	useful	USACE
Analysis of Critical Infrastructure Dependencies and Interdependenc	All scopes	2,3	Methodology; Guid	lebook	Useful	Argonne National Library
AnyLogic	Single port, inland w	3	Generic Model	Worldwide	useful	AnyLogic Co.
Aquaplot	MTS network, inland	1,2,3	Tool	Worldwide	needs more inve	Private company
Assessment and Measurement of Port Disruptions Project (Gabe Wea	Single port	3	Methodology; Mod	Nationwide - tested i	ongoing	CIRI, TRANSCOM
Automatic Identification System Analysis Package (AISAP)	All scopes	1,2,3	Data Source	Nationwide	restricted access	USACE ERDC
Automatic Identification System Data Analysis and Pre-Processor (A-D	All scopes	2	Tool	Nationwide	useful	USACE IWR
Baseline Resilience Indicators for Communities (BRIC)	All scopes	2	Data Source	Tested in SE, compare	Omit; academic	U of SC, HVRI
Bayesian Network Analysis	Single port	3	Generic Model	N/A	useful	N/A
CDC Social Vulnerability Index (SVI)	All scopes	2	Data Source	Nationwide - U.S. cen	useful	CDC
Channel Portfolio Tool (CPT)	All scopes	1,2,3	Data Source	Nationwide	restricted access	USACE ERDC
Climate Hydrology Assessment Tool	Inland	2,3	Tool	Nationwide	useful	USACE
Coastal Adaptation to Sea Level Rise Tool (COAST)	Single port	2	Generic Model	Nationwide	useful	Blue Marble Geographics
Coastal Change Hazards Portal	Single port, MTS netv	2	Tool	Coastal contiguous U	useful	USGS
Coastal Emergency Risks Asessment (CERA)	All scopes	2,3	Tool	Nationwide	useful	Several universities and par
Coastal Hazards System (CHS)	All scopes	2,3	Data Source; Tool	Northeast and Gulf	useful	ERDC ERDC
Coastal Resilience Mapping Portal	Single port, MTS netv	1,2	Tool	Select locations in th	useful	The Nature Conservancy
Common Access and Reporting Tool (CART)	All scopes	1,2,3	Other	Nationwide	restricted access	USCG
Community Resilience Economic Decision Guide for Buildings and Inf	Single port	2	Methodology; Guid	Nationwide	useful	NIST
Community Resilience Planning Guide for Buildings and Infrastructur	Single port	1,2	Methodology; Guid	Nationwide	useful	NIST
Corps Shoaling Analysis Tool (CSAT)	All scopes	2,3	Tool	Nationwide	useful	USACE ERDC
COTP Zone Area MTS Recovery Plan Guidelines	Single port	2,3	Tool; Guidebook	Nationwide	useful	USCG
Cyber Resilience Reviews (CRRs)	Single port	2,3	Tool; Guidebook	N/A	useful	DHS
Cyber-physical Disruption, Mitigation, and Response Catalog (Gabe V	All scopes	1	Tool	N/A	ongoing	CIRI
DoD Regionalized Sea Level Change & Extreme Water Level Scenario	All scopes	2,3	Data Source	Worldwide DoD	useful	DoD SERDP-ESTCP
DHS Resilience Baseline Assessment Tool (Version 2.4)	All scopes	1,2,3	Methodology	N/A	restricted access	DHS
Disaster Recovery Tracking Tool	Single port	2	Tool	Nationwide	useful	University of Texas A&M, Sup
e-Hydro (USACE Hydrographic Surveys)	All scopes	2	Data Source	Nationwide	useful	USACE
Earthquake Hazards	All scopes	1	Data Source	Nationwide	useful	USGS
Economic Decision Guide Software (EDGe\$)	Single port	2,3	Tool	Nationwide	useful	NIST
Economic Framework for Coastal Community Infrastructure	Single port	2,3	Guidebook	N/A	useful	Eastern Research Group, Inc
Economics: National Ocean Watch (ENOW)	MTS network	2	Data Source	Nationwide (coastal :	useful	NOAA - OCM
Environmental Response Management Application (ERMA)	Single port	2	Tool	Nationwide	useful	NOAA with University of New
Federal Funding Handbook for Marine Transportation System Infrastr	All scopes	1,2,3	Data Source	Nationwide	useful	CMTS
FEMA Flood Mapping Products	All scopes	1,2,3	Data Source	Nationwide	useful	FEMA
FEMA Supply Chain Resilience Guide	MTS network	1	Guidebook	Nationwide	useful	FEMA
FigureGen	All scopes	2,3	Tool	Nationwide	useful	NCSU

TIER 1

TIER 2

TIER 3

Define info needed for future decision, available funding, and amount of time.

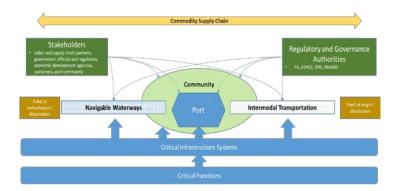
Use these requirements to ID appropriate tier

Seek to understand and prioritize the critical functions of the system

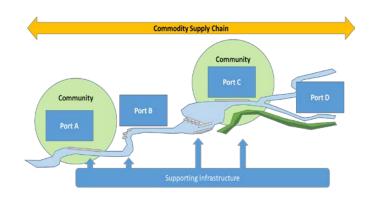
Outcomes – quickly IDs critical functions, key sectors, and any easy wins. If more information is needed to control for resilience identifies info necessary for Tier 2.

ightarrow ID structure of the system including cascading events during disruption by utilizing both experts and observational data

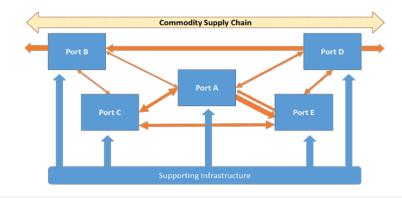
Outcomes – reveal structure of system and interrelated components to be able to compare project or investments.

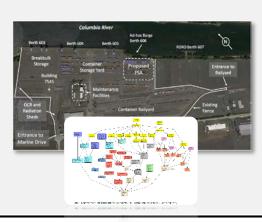

→ Analyze the system's structure and key functions throughout disruptions.

Outcomes – qualitative metrics and an understanding of the recovery process in order to ID intervention opportunities and management plans.

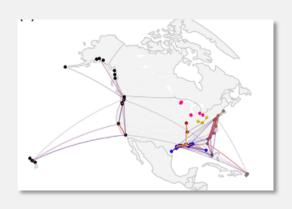

requirements cost and information Decreased

Assessment Scopes


Single Port


Inland Waterway

MTS Network


Port of Portland

TN/Cumberland Rivers

Caribbean Supply Chain

Foundational Resilience Assessment Objectives

1. Define functions & characterize the system in steady state

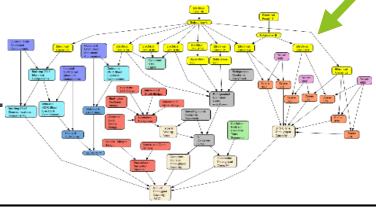
2. Analyze critical infrastructure & dependencies

3. Understand the impacts of disruptive events

4. ID & evaluate resilience enhancement alternatives

Seismic Resilience Assessment at a Navigation Terminal Lead: Dr. Martin Schultz, ERDC EL

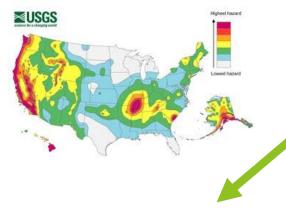
Goal: to identify the best alternatives strengthen the resilience Port of Portland's Terminal 6 for cargo throughput & a FEMA staging area after a seismic event.


1. Define functions & characterize system

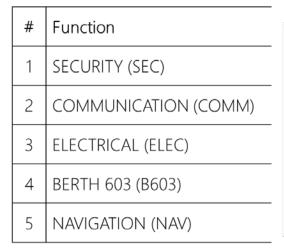
- GIS model infrastructure inventory
- Performance metric Annual Throughput Capacity (ATC)

2. Analyze critical infrastructure and dependencies

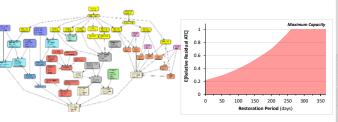
 Model ATC as a function of critical infrastructure component availability (e.g., electrical, buildings, channels, wharfs, cranes, rail lines).

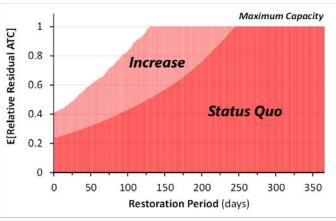

3. Understand impacts of disruptive events

- USGS Seismic Hazard Mapping Website, ODGMI Interpretive Map Series
- FEMA HAZUS MH 2.1
 Earthquake Model— damage states, fragility curves, rest. funct. of CIC


4. Develop and evaluate alternatives

 Recovery trajectories are calculated based on resilience strengthening alternatives versus status quo.


Probabilistic Seismic Hazards Analysis

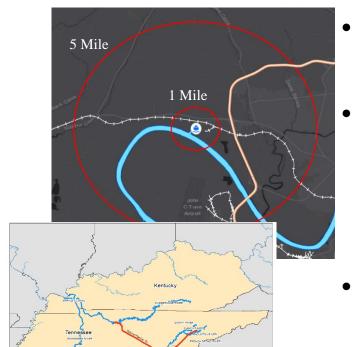

Define desired alternatives

Model ATC as a function of component availability, define status quo resilience through many recovery trajectories (Monte Carlo simulation)

Recovery trajectory of "status quo" versus alternative & combo

Inland Waterway

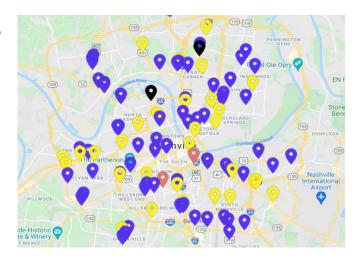
Leads: Drs. Janey Camp and Craig Phillip, Vanderbilt University


Goal: to understand the role of the inland waterway and interacting intermodal transportation systems in improving the supply chain resilience of petroleum products

1. Define functions & characterize system

- Geolocate and characterize ports key attributes (e.g. historical commodities LPMS, intermodal connectivity metric, location)
- Define with stakeholder groups

2. Analyze critical infrastructure and dependencies


 Intermodal dynamics (e.g. colonial pipeline and refined product terminals)

- Proximity to rail and road metric (ArcGIS)
- USACE Lock Monitoring Performance System Data
- Validated by 40 stakeholders, 2 workshops

3. Understand impacts of disruptive events

- Stakeholders select and discuss the impacts of 3 disruptive events
 - Colonial Pipeline interruption (2021 ransomware attack)
 - Lock Maintenance Outage
 - New Madrid Fault Event

- Impacts, concerns, response, and preparations for all 3 scenarios.
- LPMS fuel volumes
- Gas outages via GasBuddy
- New Madrid liquefaction zones

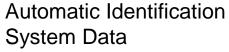
4. Develop and evaluate alternatives

 Stakeholders build on related Resilience Enhancement Options gathered from CISA Regional Resilience Assessment Program

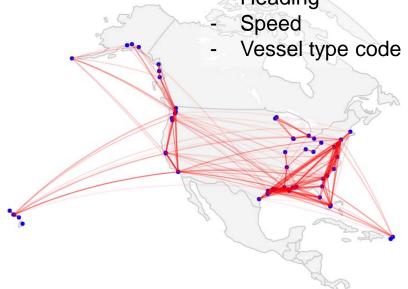
Expand Chattanooga and Knoxville terminals to accept fuel barges

Increase Traffic on Tombigbee River

Has Fuel & Power Has No Power Limited Fuel Options Has No Fuel


Update Building Codes

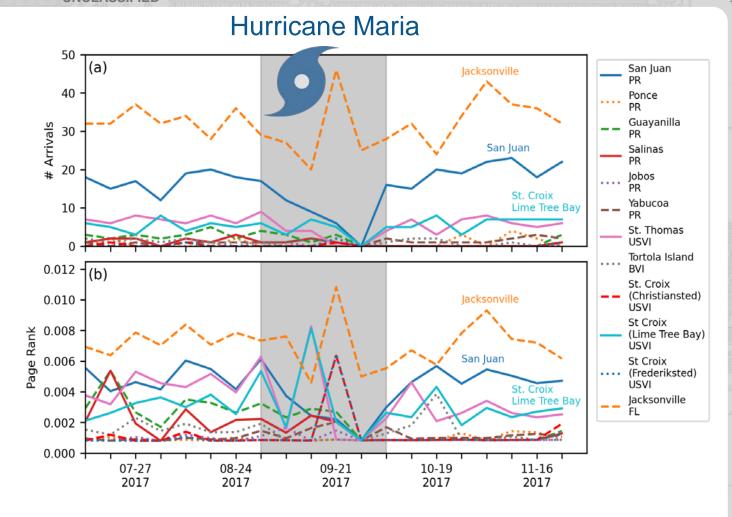
Caribbean MTS Network Analysis Lead: Dr. David Young, CHL



Goal: to understand the port network structure and identify clusters of related ports to understand their role and potential redundancies in responding to disruptions.

- 1. Define functions & characterize system
 - Detailed nationwide AIS data: 325 North American Ports, 2015-2020
 - Map vessel traffic across US trip chains, ship type, count, size, dwell time
- 2. Analyze critical infrastructure and dependencies
 - Map US maritime commerce network
 - Detect communities
 - Quantify port importance to network traffic flow
 - Examine regions

- Position
- Course over ground
- Heading



3. Understand impacts of disruptive events

 Quantify disruptions with port criticality metric

4. Develop and evaluate alternatives

 Compare port criticality metrics with total tonnage metrics to balance preventative maintenance and resilience.

Conclusions

- Stakeholders are key in validating results much greater benefit than data alone
- Success is based on on existing databases of hazard impacts nationwide is preferable, even better if level of detail is customizable
 - e.g. HAZUS MH Earthquake Model, New Madrid study by Tuttle et al. 2002, MarineCadastre AIS database
- Data on dependencies is important, however historical hazard impacts are often not recorded or available for analysis and it's hard to ID responsible party for "intermodal data"
- Resilience alternatives may be additive or detractive, consider multiple!
- A function metric is necessary to assess resilience & alternatives
 - e.g. Annual Throughput Capacity, LPMS tonnage/commodity type movement, net vessel count, port criticality metric

Questions?

Port Resilience Assessment Co-Leads

Jevon Daniel, CISA – Project Lead <u>Jevon.Daniel@cisa.dhs.gov</u>

Katherine Chambers, ERDC CHL – Project Co-Lead Katherine.F.Chambers@usace.army.mil

Stephen Cauffman, CISA, Chief Resilience Services Branch Stephen.Cauffman@cisa.dhs.gov