

HM-264 LNG by Rail Technical Briefing PHMSA OHMS 6/7/2021

Introduction

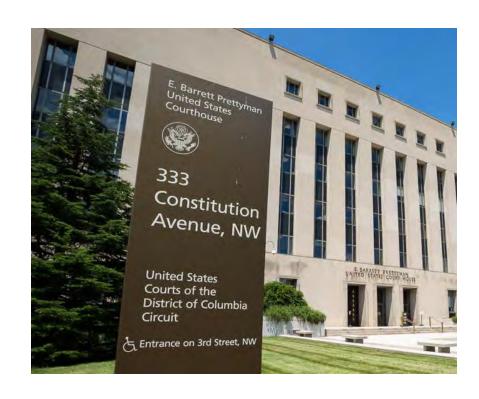
Presentation Summary

- HM-264 rulemaking summary and current status
- Packaging decisions
- Operational control decisions

Rulemaking Summary

- HM-264 final rule published July 24, 2020
- Authorizes transportation of LNG in DOT-

113C120W9 tank cars


Additional operational controls

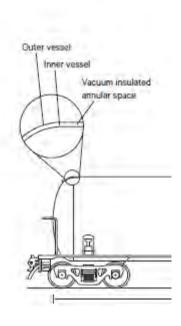
44994	Federal Register/Vol
DEPARTME	NT OF TRANSPORTATION
Pipeline and Safety Adm	d Hazardous Materials inistration
49 CFR Part 180	s 172, 173, 174, 179, and
[Docket No. F	PHMSA-2018-0025 (HM-264)]
RIN 2137-AF	40
Hazardous I	Materials: Liquefied Natural
Materials Sa	eline and Hazardous fety Administration epartment of Transportation ıl rule.
the Federal (FRA), is am Materials Re for the bulk refrigerated	HMSA, in coordination with Railroad Administration lending the Hazardous sgulations (HMR) to allow transport of "Methane, liquid." commonly known natural gas (LNG), in rail

Current Legal and Operational Status

Legal challenges

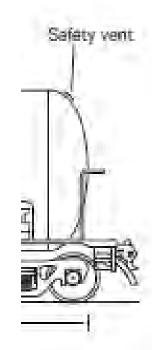
Operational status

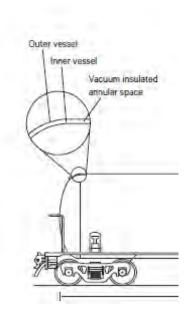
DOT-113 Packaging Technical Decisions

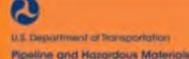


Inner Tank and Thermal Insulation

 Inner tank, insulation, and filling density limitation, relief valve role


Determination of suitability




Inner Tank Material of Construction and Pressure Rating

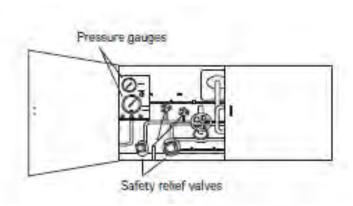
 ASTM A 240/A 240M Type 304 or 304L stainless steel

■ 120 psig test pressure

Salety Administration

Insulation and Thermal Performance

■ Insulation system specification (§ 179.400-4)

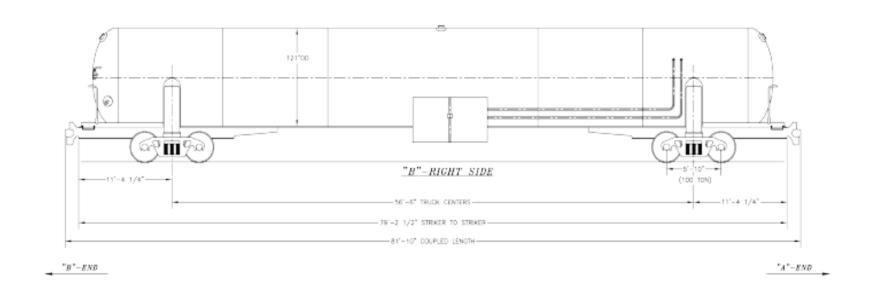

■ Thermal integrity management (§ 173.319)

Set to Discharge Pressure and Filling Density

 Filling density and pressure control valve relationship

Maximum offering pressure

Inner Tank and Lading Retention Conclusion


 Existing DOT-113 inner tank and insulation requirements are suitable for LNG

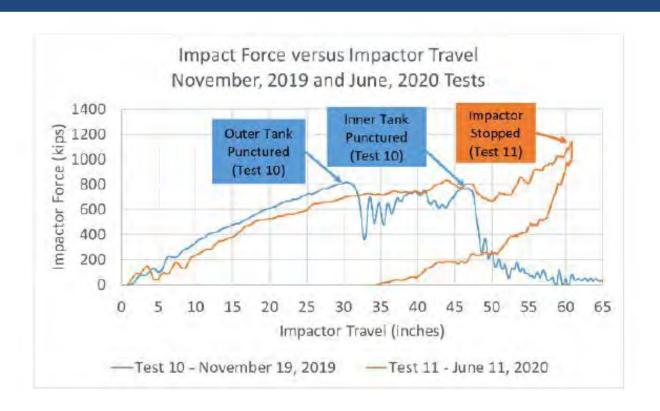
 Calculated filling density and pressure control valve set-to-discharge values will retain contents during transportation

DOT-113 Outer Tank

Increased integrity desirable and possible

Derailment Comparison

	Derailment location			
	Guernsey, SK	Casselton, ND	Arcadia, OH	
Derailment date	2/6/2020	12/30/2013	2/6/2011	
Temp at Time of Derailment	-18°C (0°F)	-18°C (-1°F)	-4°C (25°F)	
Train speed (MPH)	42	48	42	
Type of cars (Specification)	DOT 117J (286K)	DOT 111 Legacy (263K)	DOT 111 Legacy (263K)	
Shell Thickness	9/16 th inch	7/16 th inch	7/16 th inch	
Total cars derailed	32	20	32	
Total cars breached	8	19	30	
Head Punctures	0	3	10	
Shell Punctures	5	13	16	
Fittings Compromised	3	10	13	
Product(s) released	UN 1267 Crude Oil	UN 1267 Crude Oil	UN 1987 Ethanol	
Fire Occurred	Yes	Yes	Yes	
Thermal Ruptures	No	Yes	Yes	
Approximate size of derailment area	900'L X 250'W (est)	600'L X 600'W	1200'L x 450'W	
General topography of derailment area	Flat field, raised RR bed	Flat/straight tangent track	Flat field, raised RR bed	


DOT-117 and Legacy DOT-113 Impact Tests

Impact tests and finite element analysis

DOT-113 9/16 Inch Surrogate Impact Test

Outer Tank Conclusion

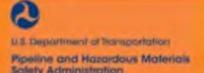
Basis for 9/16" TC-128B normalized steel

ńein j	
KEEP	
	AND THE REST

Figure 2. Post-test Photo of the Surrogate

iized steel	Guernsey, SK	Casselton, ND	Arcadia, OH
Derailment date	2/6/2020	12/30/2013	2/6/2011
Temp at Time of Derailment	-18°C (0°F)	-18°C (-1°F)	-4°C (25°F)
Train speed (MPH)	42	48	42
Type of cars (Specification)	DOT 117J (286K)	DOT 111 Legacy (263K)	DOT 111 Legacy (263K)
Shell Thickness	9/16 th inch	7/16 th inch	7/16 th inch
Total cars derailed	32	20	32
Total cars breached	8	19	30
Head Punctures	0	3	10
Shell Punctures	5	13	16
Fittings Compromised	3	10	13

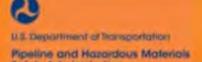
Derailment location


Safety Administration

LNG in Tank Car Operational Controls

Existing Operational Controls

- HMR's training and hazard communication
 System
- Existing operating requirements
 - Shove tank car to rest
 - 20-day in-transportation requirement
- Rail industry Circular OT-55 requirements adopted by all US railroads, enforced by FRA



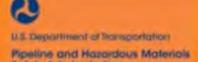
Car Handling and Expedited Shipments

Car handling

- Care in loading and unloading
- Unloading facility requirement
- No cutting off while in motion/striking under momentum
- Special white background placard
- 20-Day Notification
 - FRA must be notified of any shipment of a flammable cryogenic material in transit for more than 20 days

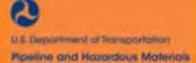
AAR Circular OT-55

Key trains


- Key routes
- Adoption and enforceability

Additional Operational Controls in HM-264

- HM-264 adopted additional operation controls for LNG transportation in tank cars:
 - Remote monitoring
 - Routing analysis
 - Braking response



Remote Monitoring

Location

Pressure

Unsafe pressure rise


Safety Administration

Routing Analysis

 Any quantity of LNG in a tank car triggers routing analysis

Risk reduction

Braking

■ DP/EOT device for trains with a block of 20 loaded tank cars of LNG, or 35 loaded tank cars of LNG

Risk reduction

Commenter Operational Controls Not Adopted

Train length and weight

Separation distance

Safety Administration

Conclusion

Final Decision Points

1. Inner tank + thermal performance

2. Filling density, loading pressure, set-to-discharge

3. Outer tank upgrade

4. Operational controls

