LNG SAFETY & EMERGENCY MGT

Committee for the Safe Transportation of Liquefied Natural Gas by Railroad Tank Car – Phase 2 Kick-off Meeting June 07, 2021

Greg Milewski CSP, CFPS, CQT

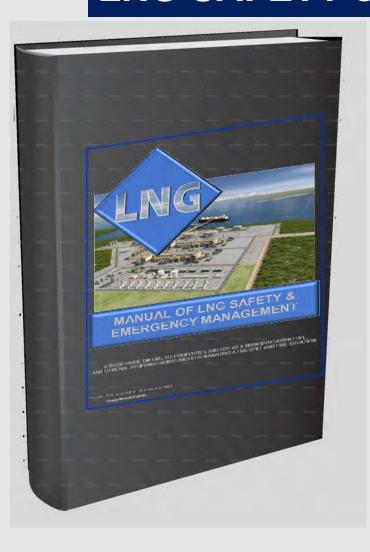
Technical Safety & Risk Engineer B.S. Mechanical Engineering / Fire Protection Engineer,

Certified Fire Protection Specialist, Certified Safety Professional and a qualified Incident Commander.

20+ years' experience in LNG as fuel for Transport.

- 20 years in the Fire Service, from Firefighter/Paramedic to Fire Chief of a volunteer fire department (retired).
- Instructor at the University of Nevada Reno Fire Training Academy
- Trainer for several Fire Departments on LNG Safety
 & Emergency Response
- Chairman of Butler County KS Local Emergency Planning Commission (LEPC).

Development/Construction/Operation of LNG Refueling Stations, LNG Bunkering, LNG Plants, LNG Storage, LNG By Road/Rail/Marine


Developed the LNG Manual on Safety & Emergency Mgt. – endorsed and used by IAFC, NASFM & 15 FD's.

Trained Fire Departments, HAZMAT Teams in 6 states on LNG Safety and LNG Emergency Response.

Larry D. Jantzen

- HazMat Training Coordinator, Jarrell Fire Department
- Over 35 years of experience in the fire service.
- Chief Jantzen retired from the Austin Fire Department as the Assistant Chief over their Special Operations and Homeland Security and Logistics Divisions with 34 years of service in 2019
- Currently serving as the HazMat Training Coordinator for the Jarrell Fire Department and a Chief Planner with the City of Austin's Office of Homeland Security and Emergency Management.
- Contract instructor at the Emergency Management Institute in Emmitsburg MD,
- Senior Consultant with Emergency Management Solutions Inc. and an "Urban Shield" Exercise planning and conduct consultant for Cytel Group Inc.
- Associate of Applied Science Degree in Fire Protection Technology and graduated from EMI's Emergency Management Advanced Academy.
- Master Exercise Practitioner (MEP), Professional Continuity Practitioner, Fire Officer IV, Fire Service Instructor III Master, Firefighter Master, Haz Mat Technician, Haz Mat Incident Commander, Fire Inspector Basic, Incident Safety Officer, EMT-B.

LNG SAFETY & EMERGENCY MGT MANUAL

MANUAL OF LNG SAFETY & EMERGENCY MANAGEMENT

A BASIC GUIDE ON LNG, ITS PROPERTIES
ITS USE IN TRANSPORTATION
AND GENERAL RESPONSE GUIDELINES FOR
MANAGING A LNG SPILL AND FIRE SITUATION

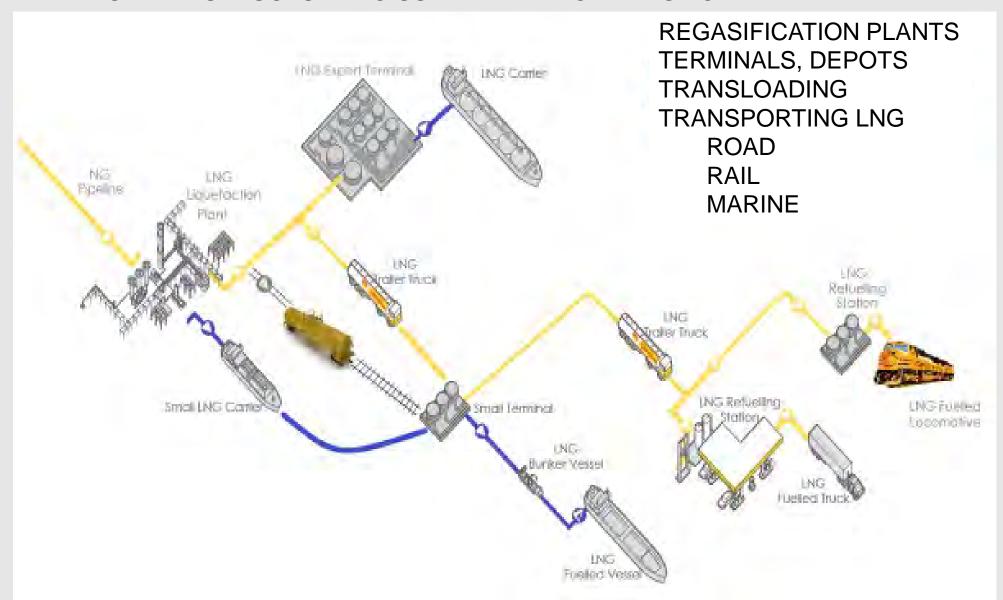
AND

Fully developed training program with supporting material / references / Instructor guides

Used in

- NASFM Training Portal
- IAFC HAZMAT Conference
- Training of 15 FD's in 6 States

Train-The-Trainer Program


LNG SAFETY & EMERGENCY MANAGEMENT

CONTENTS
SECTION 1
CHAPTER 1 SCOPE & OBJECTIVES
CHAPTER 2 WHAT IS LNG
CHAPTER 3 LNG AS A TRANSPORT FUEL
CHAPTER 4 PRODUCING LNG2
SECTION 2
CHAPTER 1 LNG PROPERTIES & CHARACTERISTICS
CHAPTER 2 STORING LNG
CHAPTER 3 BLEVE6
CHAPTER 4 LNG HISTORY6
SECTION 3
CHAPTER 1 LNG FUELED VEHICLES8
CHAPTER 2 LNG FUELED LOCOMOTIVES
CHAPTER 3 LNG FUELED MARINE VESSELS
SECTION 4
CHAPTER 1 TRANSPORTING BY ROAD
CHAPTER 2 TRANSPORTING BY RAIL
CHAPTER 3 TRANSPORTING BY MARINE VESSELS

SECTION 5
CHAPTER 1 LNG VEHICLE REFUELING
CHAPTER 2 LOCOMOTIVE REFUELING
CHAPTER 3 MARINE VESSEL REFUELING (BUNKERING)
SECTION 6
CHAPTER 1 MANAGING LNG INCIDENTS
CHAPTER 2 RELEASE/SPILL WITH NO IGNITION
CHAPTER 3 RELEASE/SPILL WITH IGNITION
CHAPTER 4 FIRE SUPPRESSION
CHAPTER 5 TERMINATING AN LNG INCIDENT
SECTION 7
RESOURCES
REFERENCES
LNG SAFETY Q & A

LNG INFRASTRUCTURE

NEW LNG INFRASTRUCTURE TO SUPPLY AND MOVE LNG TO THE NEW MARKET

PREPARE

If the responders had the knowledge and experience with LNG, the extent of the incident would have been much smaller with no risk to the responders or the public. Given some LNG tanker incidents, the correct emergency response / tactics a fire on an LNG tanker can be handled effectively without endangering people or premises

The duration of the intervention had great economic impact which would have been avoided had the emergency services been well-informed/trained and the necessary materials/knowledge had been readily available. The correct information on how to proceed in such interventions was not readily available, thus all responding emergency units (fire brigade, security forces, recovery service) were learning as they went.

MYTHS, FACTS, EXPERIENCE, KNOWLEDGE

WHAT LNG IS AND WHAT IT IS NOT

IT'S JUST NATURAL GAS

MYTHS, MISCONCEPTIONS, FALSE INFO

EXPERIENCE & HISTORY

BLEVE CONSIDERATIONS

LNG TANKS/VESSELS VS TANKS/VESSELS FOR PROPANE, BUTANE, GASOLINE, ETHANAL

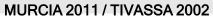
CRUDE RAIL AND ETHANOL RAIL CAR INCIDENTS

No 'bomb trains': 14 states aim to take new rule on LNG transport off the rails

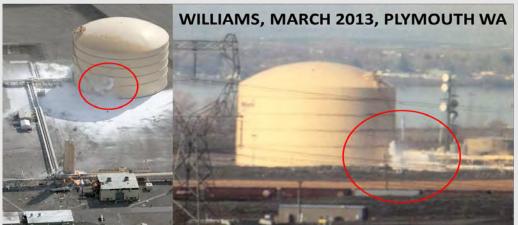
By Hannah Chinn/WHYY

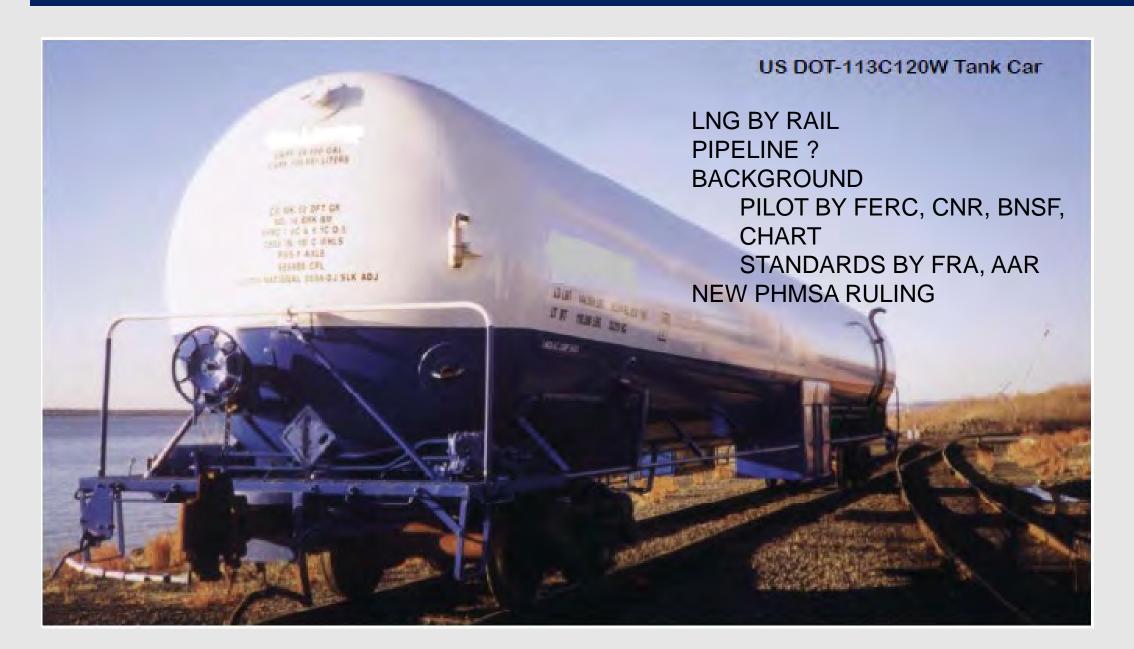
A Liquefied Natural Gas Environmental Impact Report (EIR) has shown up to 70,000 casualties

efore, so we already know how massive its destruction can be. In 1977, Oxnard opposed an LNG project after the city's fo the Oxnard EIR can be applied to all LNG proposals - worldwide.


Environmental Concerns: LNG is Another Dirty Fossil Fuel

rding to the United States Environmental Protection Agency - methane is a major vironmental Concerns


MYTHS, FACTS, EXPERIENCE, KNOWLEDGE



LNG BY RAIL

US DOT-113C120W Tank Car

STORAGE VESSEL DESIGN/CONSTRUCTION

PLANT / FACILITY STORAGE

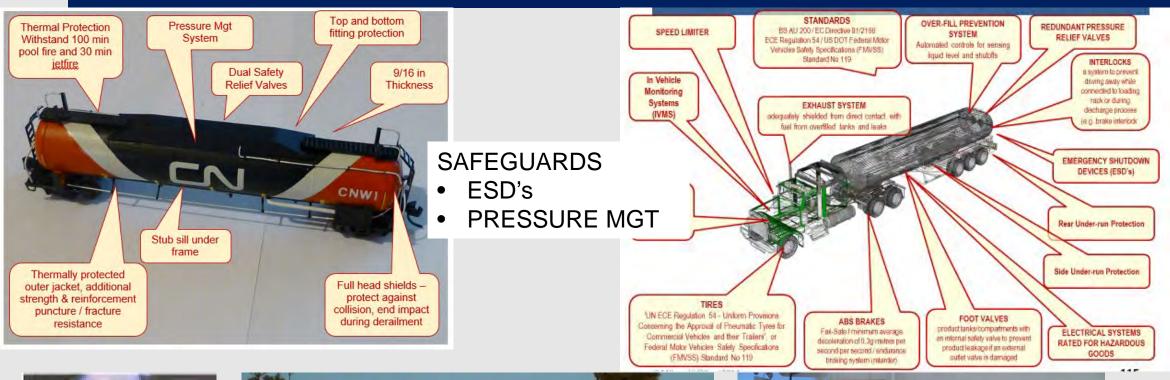
LNG FUELED VEHICLE - "GAS TANK"

LNG TRANSPORT TRAILER

SAFETY TESTING

- Tests have shown that LNG fuel tanks can withstand pressure of up to 1100psi (calculated value), well above their maximum allowable working pressures.
- Sample tanks are subjected to:
 - Destructive testing such as drop tests
 - · the tank is filled with liquid nitrogen and dropped from 10ft and 30ft and must not leak
 - Flame tests
 - · the tank is filled with Liquid Nitrogen or LNG and subject to a fire for at least 20min to ensure that during a fire the tank will not rupture
 - Material Tests
 - Tensile test
 - Impact Test
 - · Bending Test
 - Weld examination
 - Low Temp Test (-163 oC)

BLEVE


- Considerable debate
 - 2011 Murcia, Spain and 2002 Tivissa, Spain incidents often cited
 - Claim Tivissa incident the first LNG-related "BLEVE"
 - Official report does not describe the incident as a BLEVE;
 - The road tanker vessels were:
 - single-wall
 - applied polyurethane insulation that does not stay in place.
 - This type of vessel design construction is not as robust.
- US and Canadian tank construction standards require:
 - Two nested tanks form the insulated vessel.
 - Double layering of tanks and structural supports protect against physical damage and the effects of external fires.
 - Tanks tested to function safely at much higher pressures (vs. relatively low pressure level normally operate)
 - Multiple backup levels of pressure release devices.
 - Sample destructive testing and flame tests (verify not susceptible to physical compromise or fire damage).
- Experts have concluded that the accidents would not have occurred in the US.

"The combination of physical barriers also makes direct thermal input to the LNG inner tank more limited, reducing the chances BLEVE occurring in the event of a fire."

- Sandia National Lab, LNG Safety Research Report to Congress, May 2012
- National Institute Standards & Technology, NIST Safety Manual, Jan 30, 2013
- Southwest Research Institute (SWRI)
- DOT Argonne National Lab LNG Case Study
- National Petroleum Council Qualitative Discussion on Safety Considerations for LNG
- Centre for Studies on Technological Risk (CERTEC).
- Robin Pitbalbo, DNV, "Potential for BLEVE associated with marine facilities", Journal of Hazardous Materials, Volume 140, Issue 3, 2007
- Filippo Gavelli, "Liquefied Natural Gas Explosion Hazards Are They Real?," Hydrocarbon World, 2009

- The double walled construction inherently more robust than the equivalent tanker truck design.
- An explosion of an LNG container is a highly unlikely event, possible only if:
 - o pressure relief equipment or system fails completely or
 - o combination of high vaporization rate and obstruction of venting
 - This is a highly unlikely event due to code requirements for pressure relief.
 - No reports in the literature reviewed of any BLEVE occurring with LNG.

MANAGING TRANSPORT INCIDENTS

- STRUCK BY --- STRIKE AGAINST
- TRANSP ROLLOVER /// DERAILMENT
- QTY ACROSS MODES
 - 1 ROAD TRANSP /// UNIT OR MANIFEST TRAIN

MANAGING TRANSPORT INCIDENTS

- OVER LAND, OVER WATER
 - TRANSPORT OVER BRIDGE, ALONG LAKE, RIVER, ROLLOVER INTO WATER FILLED DITCH
- CONGESTED / UNCONGESTED
 - UNDER BRIDGES, OVERPASSES
 - TUNNELS
 - UNDERGROUND (SEWERS, UTILITIES, DRAINAGE)

LOADING / OFFLOADING

- Normal Operations
- Emergency incident

MANAGING AN INCIDENT INVOLVING LNG

PRIORITIES:

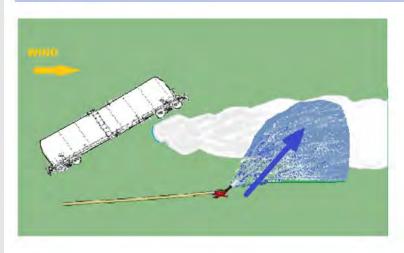
- □ Rescue,
- ☐ Evacuation, and
- Scene Control

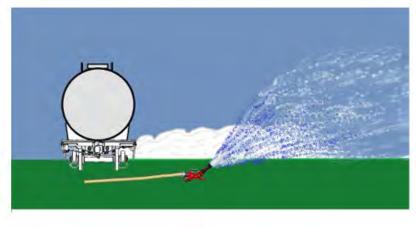
ASSESS THE INCIDENT

- leaks, spills, releases
- With or without ignition
- Pressure management / Venting
- External impact

INCIDENT MANAGEMENT

- NOT ATTACK
- ATTACK


MANAGING AN INCIDENT INVOLVING LNG


CONTAINMENT

VAPOR CLOUD MANAGEMENT

LNG SAFETY & EMERGENCY MANAGEMENT LNG FAQ

MANAGING AN INCIDENT INVOLVING LNG

LNG BY RAIL

LESSONS LEARNED FROM **INCIDENTS**

KNOWN STRATEGIES & TACTICS

