Composite Material in U.S Coast Guard Aids to Navigation

LT Jon Benvenuto, P.E.

U.S. Coast Guard

Abstract

- Common occurrences for Aids to Navigation (ATON)
 Structures:
 - Corrosion of metal
 - Concrete and timber deterioration
- Failures occur at various rates and are dependent upon the environment in which the structures reside
- Fiberglass Reinforced Polymer (FRP) has superior ability to withstand harsh marine environments

Introduction

- ATON correctly mark navigational channel for mariners designating safe water
- Traditional materials for constructing ATON consist of
 - Steel
 - Timber
 - Concrete
- Rate of degradation of materials in marine environments results in failure and replacement of vital aids
- A US Coast Guard primary mission is to design and maintain the ATON system for the United States

Looking ahead...

- The U.S. Coast Guard is selecting ATON designs based on lifecycle cost of a structure vs. a best initial value design
- Intended design life for new ATON is moving from a 25-50 year to a 75-100+ year design life
- Metal coatings, concrete mix admixtures and timber preservative treatments prolonged lifecycles
- Difficult to meet >75 year lifecycle in harsh conditions

Corrosion

- Advancements in FRP = corrosion resistant, strong, lightweight and cost effective
- Structural material degradation from corrosion – large factor in engineering design
- 2014 estimated worldwide corrosion cost to be \$2.2 trillion (>3% of the world's GDP)

Steel

- Steel used in ATON structures for many years
- An ideal candidate for large ATON structures; rigid and abrasion resistant
- Steel is not as cost effective as in the past

Increasing material cost +
Amount of steel used in aids diminishing
= Shorter ATON lifespan

Protection from Corrosion

- 1. Cathodic Protection
- 2. Alloyed Metals
- 3. Coatings

TIMBER

- Used for hundreds of years due to its affordability and workability
 - Renewable, low in cost, easy to manufacture, can be recycled, flexibility
- Lifecycle is dependent on the species, treatments, coatings and the environment of its intended use
- Highly susceptible to abrasion damage from boats, ice and other floating debris
- Increase in labor and fuel costs throughout lifecycle due to the need for frequent replacement, timber does NOT provide a low lifecycle cost option
- If timber ATON **NOT** knocked over, timber aids can have a lifecycle from 20 to 40 years, sometimes longer

Concrete

- The use of reinforced concrete in ATON occurs on a case by case basis.
- Used as channel markers not advisable in areas with high knockdown rates although proven to be an excellent material for ATON IF constructed properly
- Primary issue is the difficult and costly repair or removal once it has reached the end of its useful life
- Most concrete ATON structures are often built and demolished using private contractors, which can be very costly

Fiber Reinforced Polymer (FRP)

- Fiber Reinforced Polymers (FRP) have been around since the beginning of the 20th century
- Extend the expected lifecycle beyond that of using traditional materials and cost effective in certain instances
- Utilize thermoset polymers to enhance the resistance of ultra violet degradation and abrasion
- USCG CEU Miami has implemented an initiative to use FRP in ATON to lower lifecycle cost and increase aid availability
- FRP ATON much safer alternative due to its ability to absorb high impact loads without permanent deformation or failure

Figure 1:USCG Aids to Navigation (ATON)
Built Using FRP Piles

Successes of FRP

- Approximately 25 FRP ATONs have been installed in high knockdown areas since 2014
- Only <u>ONE</u> reported knockdown within the last year
- Cutter construction crews have found the FRP piles to be lightweight and easy handle on deck; cuts and drills efficiently

Challenges of FRP

- Specific blades required for cutting
- The smooth surface of the piles requires some adjustments in handling
- In areas with hard soils, the top and tip of the pile may become damaged when driven
 - Many FRP piles used for ATONs ordered with cast iron driving tip for hard bottoms where steel normally used
- There are many variations in the FRP manufacturing process therefore making it a challenge to use FRP materials across suppliers

Benefits of FRP

- Despite some growing pains, FRP benefits outweigh costs
- Very high resistance to degradation in marine environment
 - Primary mechanism of ultraviolet breakdown has been addressed with coating and admixtures to the resin mix
- Material is lighter than steel with very high strength-toweight ratio; compatible with most existing on-board equipment
- High strength and low modulus allows it to absorb impacts making it less susceptible to damage

Ultra Violet Resistance Testing

- FRP structural elements not used long enough to prove a 75-100 year design life
 - Performing UV accelerated weathering tests (ASTM G154) predicts long term strength
- Engineers utilize factor of safety to meet the 75-100 year lifespan requirement from accelerated UV testing
- Use of UV resistant coatings help delay degradation in strength

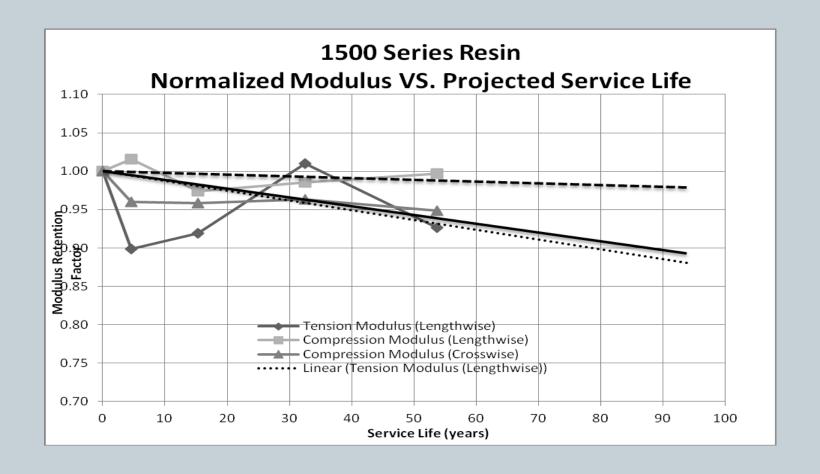


Figure 2: Example of UV Accelerated Weathering to Predict Long Term Strength (Courtesy Creative Pultrusions, Inc.)

Fatigue Resistance

- FRP, when placed at high temperature extremes i.e. >50°C/122°F will have more deflection.
- Studies have proved that fatigue testing performed at extreme temperatures show little to no fatigue damage apparent

Abrasion Resistance

- High density polyethylene (HDPE) pipe bonded over an FRP pile for additional abrasion resistance.
- Bonded HDPE pipe also offers the FRP pipe a greater degree of UV protection.

Bending Stiffness

 If design requires minimizing deflection, FRP bending stiffness may require use of a hybrid design to reduce the deflection

 FRP has about one-fifth the bending stiffness as compare to steel

 FRP is an anisotropic material; direction of the forcapplied has much to do with how the material bends

Lifecycle Co\$t

- Must consider construction/demolition/reconstruction costs along with associated maintenance costs required to achieve the designed/predicted lifespan.
- Most manufactured materials have a point of diminishing returns where they are no longer cost effective to maintain.

100 Year Lifecycle Cost Analysis of 60 foot long pile in Key West, Florida (interest - 5 percent)				
		Treated	Reinforced	
	Steel Pile	Timber Pile	Concrete Pile	FRP Pile
				12 in dia x 1/2 inch
Size	12 in dia X 3/8 inch wall	Varies ~ 12 inches	12 inch x 12 inch square	wall
Material Cost at year 0 (\$)	\$3,908.09	\$527.82	\$1,135.20	\$3,407.42
Installation Cost at year 0 (\$)	\$25,000.00	\$25,000.00	\$25,000.00	\$25,000.00
Service Life (estimated)	50 years	25 years	50 years	100 years
Disposal Cost (Present Value)	\$2,500.00	\$500.00	\$8,500.00	\$1,500.00
Replacement Cost at year 25 (\$)		\$88,139.31		
Replacement Cost at year 50 (\$)	\$360,169.13	\$298,471.42	\$397,175.69	
Replacement Cost at year 75 (\$)		\$1,010,730.27		
Disposal Cost at year 100 (\$)	\$328,753.15	\$65,750.63	\$1,117,760.71	\$197,251.89
PV yr 0, 100 year service (\$)	\$62,814.84	\$104,108.37	\$69,268.92	\$29,907.42
Year 100 LC cost (\$)	\$717,830	\$1,488,619	\$1,541,071	\$225,659

Figure 3: Lifecycle Cost Analysis of Piles Constructed of Various Materials

Disposal and Recycling

• FRP's disposal needs to be considered so environmental concerns are mitigated through use of new technology.

Conclusion

- 1. Pilot program for FRP ATON structures proved a viable, cost effective alternative to traditional materials from both a performance and lifecycle cost standpoint.
- 2. Use in Coast Guard ATON structures makes for safer waterways and higher aid availability.
- 3. Continued use yield much less annual maintenance costs and reduce wear and tear on aging Coast Guard construction tender fleet.

Questions

