Power Systems Engineering

Maritime Education, Training, Research & Innovation Summit

November 9, 2020

Matthew R. Werner, Dean

Webb Institute

Future Changes in Marine Propulsion Systems – Historical Perspective

- 1800s –Steam ships develop
- 1830s Screw propellers develop
- 1880s Electric-powered boats develop
- 1892 Rudolf Diesel invents the "diesel engine"
- 1894 Steam turbine employed in a shipboard application
- 1940s Steam power begins to be replaced by diesel power
- 1955 First nuclear powered ship
- 1959 LNG becomes a marine cargo
- 1970s Energy crises
- 1980s Climate change focus develops

Future Changes in Marine Propulsion Systems – System Perspective

- System of Systems
 - Geopolitical Framework
 - Economic System
 - Transportation System
 - Ship
 - Propulsion System
- System design drivers
 - Mission or need
 - Technology development
 - Constraints
 - Physics based
 - Economic based
 - Social/Political based

Future Changes in Marine Propulsion Systems - Pathways

- Continuous improvement of existing technologies
 - Electronically controlled diesel engines
 - Advanced heat recovery
 - Emission control/treatment systems
 - Hybrid systems
 - Electric systems and propulsion
- Alternative and Augmenting Systems
 - Sails
 - Solar

- Alternative/Clean Fuels*
 - LNG
 - Biofuel
 - Hydrogen
 - Ammonia
 - Methanol
- Development of new technologies
 - Advanced batteries
 - Energy storage
 - Fuel cells
 - Modular reactors

Foundation Disciplines for the implementation of future propulsion systems

- Engineering and science fundamentals remain important
 - Basics of science and engineering science empower understanding
 - Ability to learn and think technology will change, constraints will change
- Design and systems thinking
 - Big picture vs. narrow focus
 - Challenges to implementing technological innovation
- Sustainability
 - "There's no such thing as a free lunch"
- Data
 - Collection and analysis
 - Enabling better decision making
- Control and Automation
 - Autonomous systems are here now!
- Electric Power
 - Generation, storage, transmission, and utilization

Undergraduate Education of Marine Engineers

- Fundamentals are essential science, engineering, technology, and design
 - Currency is critical
- Sustainability
 - Economic, Environmental, and Social
- Computer Programing
 - Data Analysis
 - Automation
- Optimization
 - Problems
 - Methods
- Electrical Engineering
 - Power
 - Control, Monitoring, and Automation
- Alternative Fuels

Workforce Development and Training Opportunities

- Maritime Training Schools and Union Schools
- State Maritime Schools continuing education programs
- Graduate Programs Marine Engineering
 - USMMA
 - U of M (NAME)
 - EU, Asia, Australia
- Graduate Programs Other
 - Mechanical engineering
 - Aerospace engineering
 - Electrical engineering
 - Environmental engineering
- Professional Society continuing education programs
- Classification Societies
- Equipment Manufacturers

Research Opportunities

- Data, Data collection from active ships and equipment manufacturers made available to researchers
- Robust modeling of ship and propulsion system
- Methodologies for sustainability-based analysis of propulsion system options
- Reliability and risk-based assessment approaches to inform the adoption of autonomous vessels and remotely supervised shipboard systems