
The Journey to 2050

Christopher J. Wiernicki | Chairman, President and CEO

© 2020 American Bureau of Shipping. All rights reserved

Fuel Pathways

Fuel Types

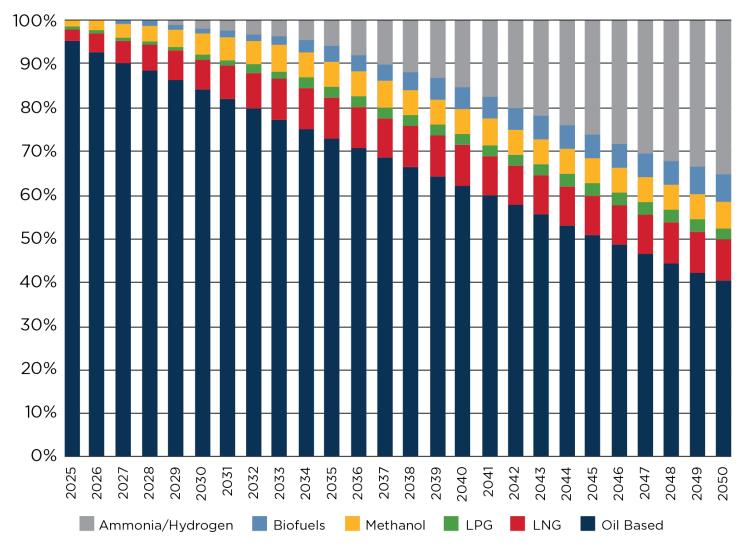
Fuel Type	Infrastructure	Security of Supply	Energy Density	CO2	SOx	Safety
Heavy Fuel Oil				\bigcirc	0	
Marine Diesel						
LNG						•
LPG						
Methanol (from Methane)						
Methanol (from biomass)						•
Ammonia (from methane)	0					
Ammonia (from renewable)						
Hydrogen (from methane)	•					
Hydrogen (from renewable)						
Biofuels	•	•		1 2		•

Notes

- Infrastructure refers to existing bunkering infrastructure or facilities that can be adapted to support bunkering (e.g. import/export terminals)
- Security of supply refers to the availability of sufficient global production to meet significant demand from the marine sector for bunkers
- **Energy density** refers to the volumetric energy content of the fuel and on-board storage requirements
- CO₂ and SOx refers to impact on emissions
- Safety refers to handling, storage and consumption risks

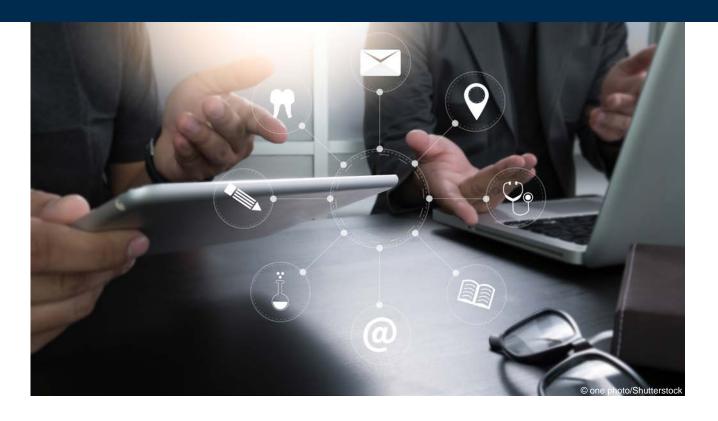
Technology Maturity Rates

Component	Feature	Potential Saving	Technology Readiness Level
1. Hull Design	Lightweight materials Hull coatings	2-5%	1-9
	Hull air lubrication system	4-5%	9
	Ballast water reduction	3-8%	3-6
	Hull form optimization Energy saving devices	5-15%	9
2. Power and Propulsion	Hybrid power/propulsion		
	Power system/machinery optimization	3-8%	7-9
	Power system/machinery optimization		
3. Alternative Fuels/Energy	Waste heat recovery Wind		
	Solar power	2-12%	3-9
	LNG LPG	20%	9
	Bio-Methanol Bio-Ammonia	75%	6-9
	Electric (non-renewable/renewable)	8-95%	7
4. Operations	Cold ironing	4%	9
	Speed/voyage optimization	5-7%	9


Pathway to 2050

Alternative Fuels Hydrogen • LNG and Energy Ammonia LPG/Ethane Sources Methanol (Regional) Biofuels (Regional) Biofuels (Global) Improved Hull & ESD Options Wind/Solar Air Lubrication Technology **Improvements** Fuel Cells Electric Propulsion Hybrid Cold Ironing Carbon Capture (Shore/Ship) Weather Routing Operational New Charter Arrangements Efficiency Just in Time Shipping Speed Optimization Smart Vessel/ Vessel Performance Fleet Interactive Performance/ **Improved Reliability Optimization** Reporting

Pathway to 2050


Fuel Forecast

Talent Equation Transformation

Age + Experience + Skills + Training = Talent

Talent Equation Transformation

((New Technology + Rate of Change of Technology) + People) + Learning = Talent

© 2020 American Bureau of Shipping. All rights reserved

Thank You

www.eagle.org