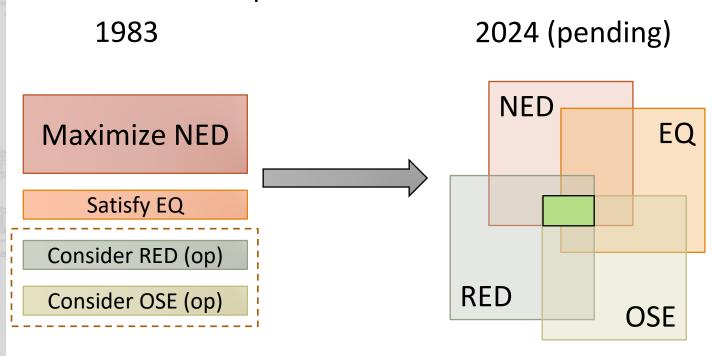


Benefit Cost Analysis & Engineering With Nature

Margaret Kurth
Research Environmental Engineer
US Army Corps Engineer Research and Development Center

Presentation to Marine Board of the U.S. National Academies of Sciences, Engineering and Medicine
April 16, 2024



Evolving Economic Analysis for Federal Water Projects

Principles and Guidelines

Guiding principles:

- Healthy and resilient ecosystems,
- Sustainable economic development,
- Floodplains,
- · Public safety,
- Environmental justice, and a
- Watershed approach.

NED = National Economic Development

EQ = Environmental Quality

RED = Regional Economic Development

OSE = Other Social Effects

A Shifting Narrative about Infrastructure Benefits and Co-Benefits

A Conventional Framing of Infrastructure Planning

Infrastructure performs engineering functions and services

Fewer objectives centered on an organization's mission

Ecosystems treated as a constraint addressed through compliance

Social benefits are secondary outcomes

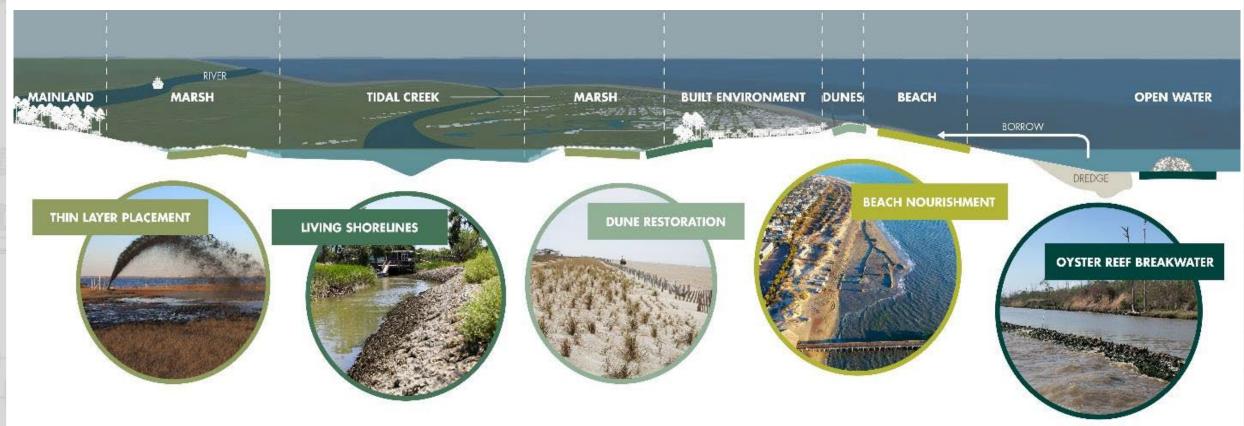
Emphasis on short-term benefits over the "planning horizon"

An Emergent Approach to Infrastructure Decision-Making

Infrastructure performs engineering functions and services

Many objectives with a multi-purpose and multi-organizational framing

Ecosystems included in the goals


Social benefits are part of the design

Addresses short-term outcomes but also considers long-term sustainability and performance

Figures: Adapted from Suedel et al. (2022, STOTEN)

...the intentional alignment of natural and engineering processes to efficiently and sustainably deliver economic, environmental and social benefits through collaboration.

Graphic developed by Rhett Jackson and Kelsey Broich, Network for Engineering with Nature, University of Georgia. Thin layer placement image by Tim Welp, USACE. Living shoreline and dune restoration images by UGA Marine Extension and Georgia Sea Grant. Beach nourishment image by Alan Robertson, City of Tybee. Oyster Reef Breakwater, Bon Secour National Wildlife Refuge in Alabama photo used with permission and provided to the University of Georgia by USACE, Engineering With Nature.

Broadening Benefits

- Hazard Loss Reduction
- Habitat
- Recreation & Tourism
- Climate Regulation
- Carbon Storage
- Human Health and Well-Being
- Water Quality
- Food Provision
- Lifecycle cost avoidance

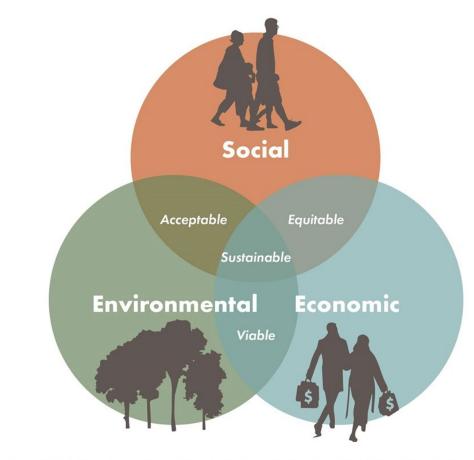


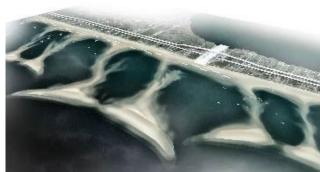
Figure 4. Triple-Win Outcomes Achieved through EWN (Large Text) and Associated Additional Benefits (Small Text) From (USACE, 2018).

The USACE Navigation Mission Provides the "Currency" of EWN Climate Resilience - Sediment

Sediment "Recharge" via Dredging

Direct Wetland "Nourishment"

Wetland Creation

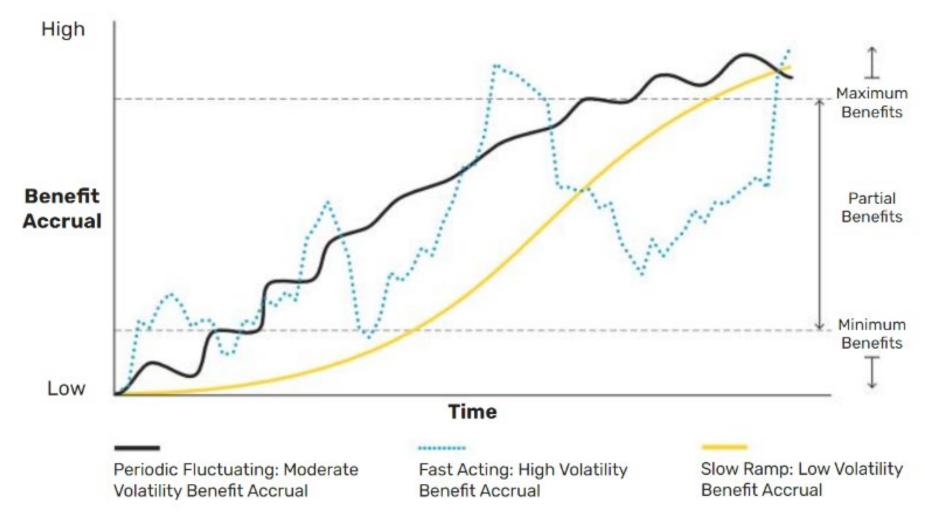

Island Enhancement or Restoration

Thin-Layer Placement for Bottom Contouring

Beach and Dune Construction

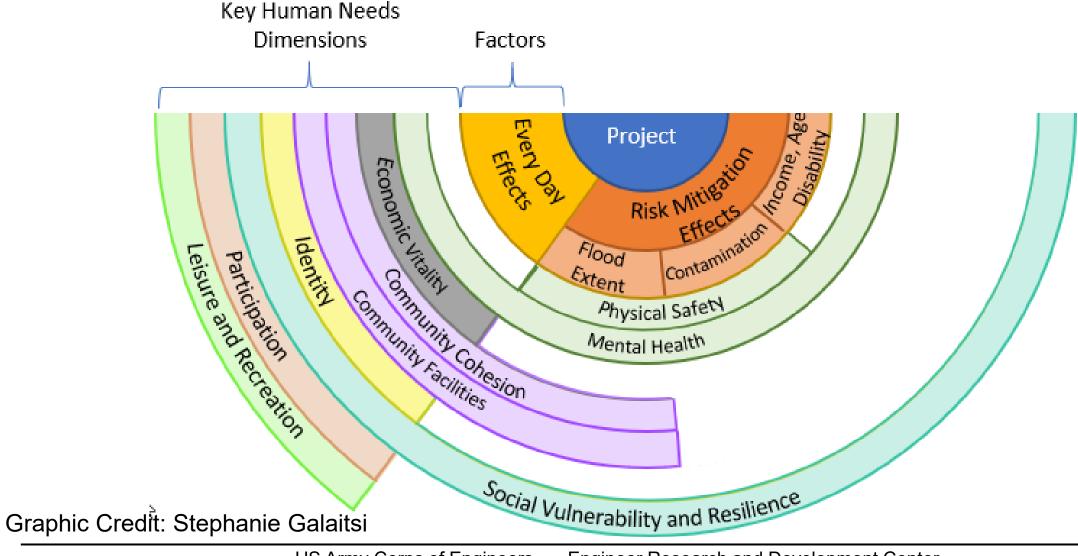


New Island Construction



- BU is not generally the least cost way to meet a project's objective
- Benefits accounting is not set up to include many of the strengths of EWN projects
- Local demand for EWN projects is uneven
- Adaptive management can be viewed as a weakness of project design
- Regulations that prevent BU, vary by state
- Technology not optimized for BU
- Missions and authorities are siloed, which make operational efficiencies and systems thinking difficult
- Institutional culture is risk-averse
- Agency Context: Constraints on Beneficial Use (BU)

Dynamic Benefit Streams


From International Guidelines on NNBF for FRM Ch. 6

Resilience Benefits of Natural Infrastructure

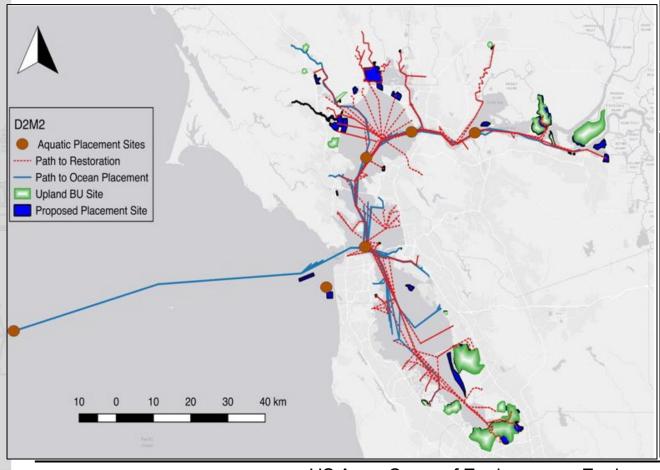
Plan/Prepare Enhance shoreline accretion Decrease shoreline erosion/mitigate shoreline retreat Wave attenuation and/or dissipation Protect and reduce erosion from storms and rising tides		Shoreline and/or sediment stabilization					
Decrease shoreline erosion/mitigate shoreline retreat Wave attenuation and/or dissipation Protect and reduce erosion from storms and	Plan/Prepare	Enhance shoreline accretion					
Protect and reduce erosion from storms and		· · · · · · · · · · · · · · · · · · ·					
l Abearh l		Wave attenuation and/or dissipation					
1.5.1.9 1.4.5	Absorb	Protect and reduce erosion from storms and rising tides					
Wind speed reductions due to windbreaks or shelter belts		Wind speed reductions due to windbreaks or shelter belts					
Recover Promotes self-recovery after hazard event	Pocovor	Promotes self-recovery after hazard event					
Able to recover with minimal intervention	Recover	Able to recover with minimal intervention					
Adaptability to changing community needs		Adaptability to changing community needs					
Adapt Enhance likelihood of landform evolution naturally	Adapt	Enhance likelihood of landform evolution naturally					

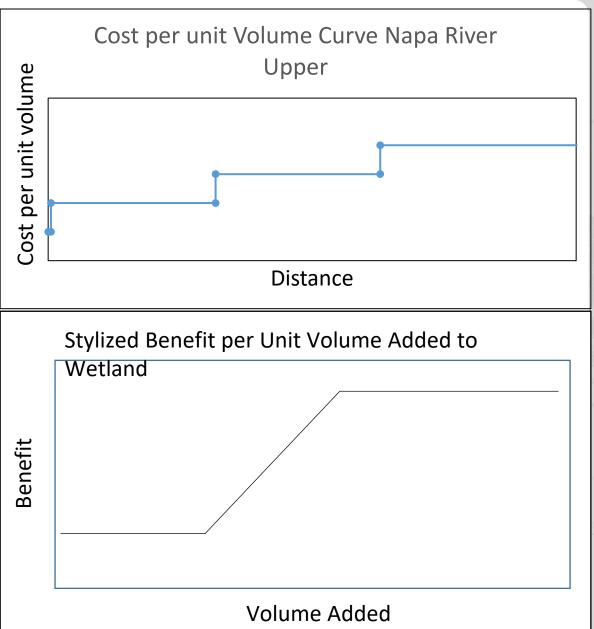
Consider "Everyday Effects"

Enhancing benefits evaluation for water resources projects:

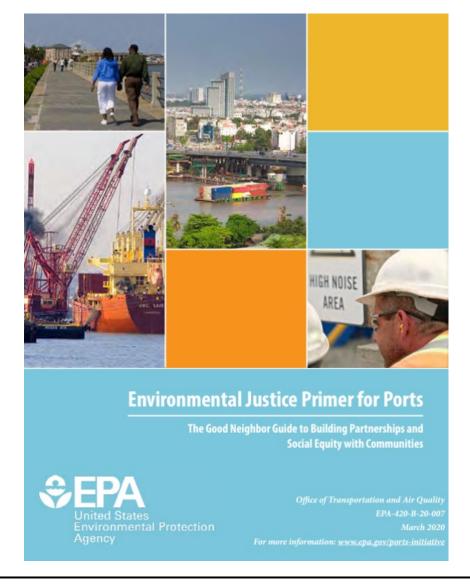
Towards a more comprehensive approach for nature-based solutions

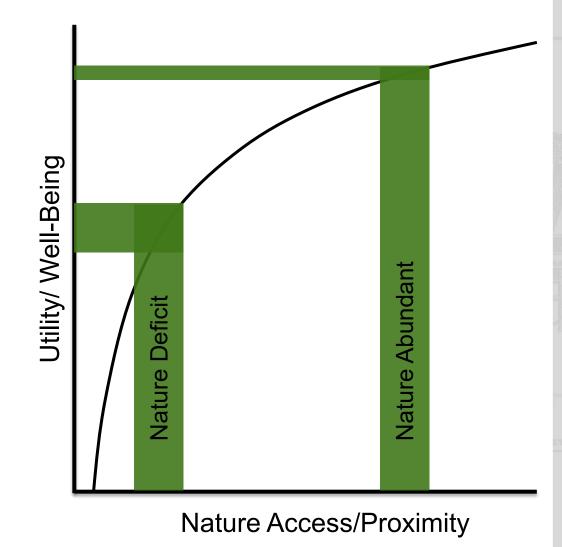
Case Study Results


Table ES 1. Summary of key findings and opportunities, organized by planning stage.


Planning stage	Key finding	Opportunity				
Study Scope	Scoping within separate mission areas limits NBS opportunities.	Use an integrated, multi-objective approach to scope planning studies.				
Alternative Formulation	NBS options are often excluded during alternative formulation.	Formulate integrated alternatives designed to provide benefits or cobenefits across all PR&G guiding principles and to different communities of interest.				
Evaluation of Non-Monetized Outcomes	Existing tools can support non- monetary benefit estimation.	Evaluate alternatives using metrics for all PR&G guiding principles and communities of interest.				
Ecosystem Service Valuation	A range of existing methods may be applied to enable more comprehensive valuation.	Develop USACE guidance, resources, and tools for monetizing a broader range of benefits.				
Prioritization and Alternative Selection	Monetizing ecosystem service benefits improved BCA analysis but was generally insufficient to change alternative rankings due to decisions made during scoping, screening, and alternative formulation. Multi-objective analysis is necessary to capture all benefits.	Apply transparent multi-criteria decision analysis as the primary approach for alternative ranking and selection.				

Engineer Research and Development Center

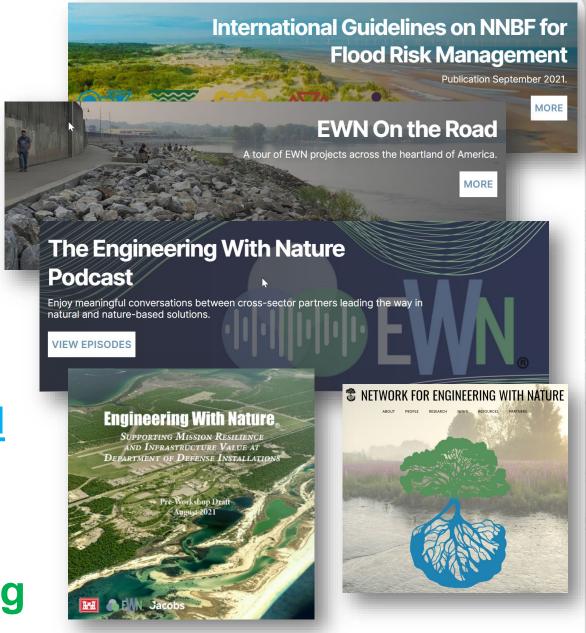

System-Wide Planning


Optimize placement to minimize cost, maximize benefit

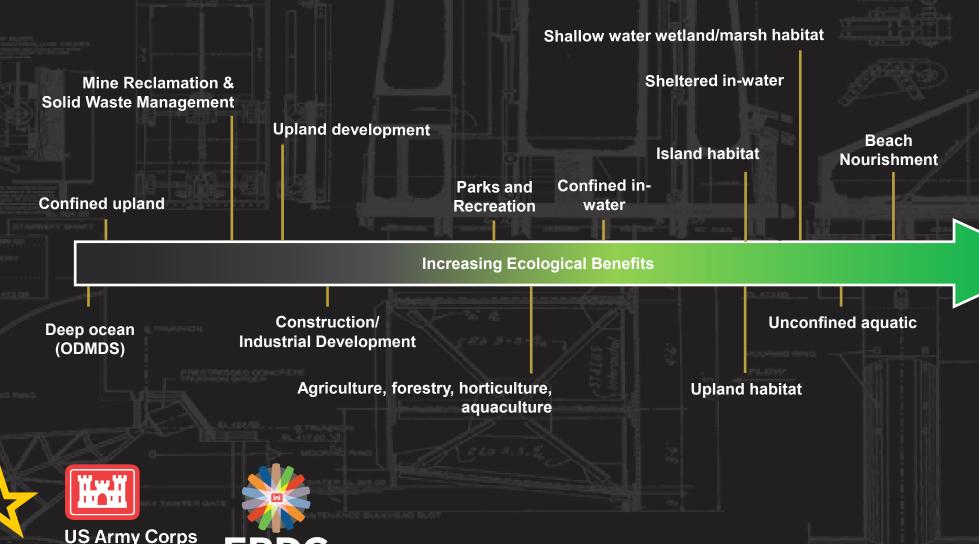
Distributional Costs and Benefits

BU Decision Support Matrix – Demo

Under Development. POCs Chuck Theiling, Burton Suedel, Ben Emery, Justin Wilkins


⊿ A B D	Е	F G	Н	I J	J K	L	M	N O	Р	Q	R S	Т	U _\
1 Beneficial Use Placement			1			2			3			4	
Bear			Beach Nourishment (littoral,		Beach Nourishment (littoral,		Open-Water Placement, G-			Construction and			
Site Alternatives	1	nearshore, or shallow water),			nearshore, or shallow water),			DODS			Industrial/Commercial Uses, Dredge Harbor and Stockpile		
Decision guidance matrix			nitz Beach P	ark 8,000		t Mayors O	8,000	Cit		8,000		Harbor and	8,000
4		Capacity: Unit Cost:	Ś	263.03	Capacity: Unit Cost:	\$	266.20	Capacity: Unit Cost:	Ś	148.03	Capacity: Unit Cost:	Ś	174.34
5		Total Cost:	\$	2,104,204	Total Cost:	\$	2,129,633	Total Cost:	\$	1,184,245	Total Cost:	\$	1,394,719
6 Criteria		Duration:		240 d	Duration:		240 d	Duration:		30 d	Duration:		60 d
Ecosystems Goods and Services (EGS)	Weight	Benefit	Urgency	Priority	Benefit	Urgency	Priority	Benefit	Urgency	Priority	Benefit	Urgency	Priority
9 1 Aesthetics	5%	High	High	5%	High	Medium	4%	None	None	0%	None	None	0%
2 Climate regulation/Carbon sequestration	5%	None	None	0%	None	None	0%	Low	Low	1%	None	None	0%
11 3 Cultural, spiritual, educational	10%	High	Medium	8%	High	Medium	8%	None	None	0%	None	None	0%
4 Ecosystem sustainability	10%	High	High	10%	High	High	10%	None	None	0%	None	None	0%
5 Food provisioning	10%	Low	Medium	3%	Low	Medium	3%	None	None	0%	None	None	0%
14 6 Hazard mitigation	20%	Medium	Medium	10%	Medium	High	15%	None	None	0%	None	None	0%
15 Human health support	10%	High	Low	5%	Medium	Low	3%	None	None	0%	None	None	0%
Navigation maintenance	20%	High	High	20%	High	High	20%	High	High	20%	High	High	20%
9 Raw goods & materials provisioning	5%	None	None	0%	None	None	0%	None	None	0%	Medium	Low	1%
18 Recreation Supply	5%	High	tedium	4%	High	Medium	4%	None	None	0%	None	None	0%
19 Water Purification & Waste Treatment	0%	None	None	0%	None	None	0%	None	None	0%	None	None	0%
20 12 Water Supply & Regulation	0%	None	None	0%	None	None	0%	None	None	0%	None	None	0%
21 13 (Other): enter here	0%	None	None	0%	None	None	0%	None	None	0%	None	None	0%
22 23 *notes	max 100%		Score	64%		Score	65%		Score	21%		Score	21%
About Table 1. Placement Sites Ta	able 2. EGS	able 1. Summa	ry Table 2	. Summary	BU scoring	BU Scoring	chart BU E	GS Scoring Ch	arts EGS	+ : [1		

Thank you


margaret.h.kurth@usace.army.mil

www.engineeringwithnature.org

US Army Corps of Engineers • Engineer Research and Development Center

Sediment Beneficial Use Placement as an Economic–Social–Ecological Continuum

of Engineers®

U.S. ARMY