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Outline

* Promises & pitfalls of studying prepregnancy BMI and gestational
weight gain using big data sources:

e \/ital statistics data
 Medical claims data
 Electronic health record (EHR) data

e Conclusions & research gaps
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Vital statistics data

e Data are collected on Certificates of Live Birth and Fetal Death

* Typically, forms are completed during the birth hospitalization then

reported to state health departments and the U.S. National Vital
Statistics System of the CDC

* The CDC revised forms in 2003 to include fields for height and for
weight prepregnancy and at birth

* Fully implemented in the U.S. in 2016

31. MOTHER'S HEIGHT 32. MOTHER'S PREPREGNANCY WEIGHT |33. MOTHER'S WEIGHT AT DELIVERY
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Image from: https://www.cdc.gov/nchs/data/dvs/birth11-03final-acc.pdf







Large sample size and high generalizability
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Publicly accessed at: https://www.cdc.gov/mmwr/volumes/65/wr/mm6540a10.htm. QuickStats: Gestational Weight Gain Among Women with Full-

Term, Singleton Births, Compared with Recommendations — 48 States and the District of Columbia, 2015. MMWR Morb Mortal Wkly Rep
2016,;65:1121. DOI: http://dx.doi.orqg/10.15585/mmwr.mm6540a10.



http://dx.doi.org/10.15585/mmwr.mm6540a10

Ability to link to other data sources
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Strength in size, generalizability, and linkage

Example of assessing the risk of severe maternal morbidity across
gestational weight gain values and stratified by prepregnancy BMI group
in 2.5 million people

Prepregnancy BMI <18.5 kg/m? Prepregnancy BMI 240 kg/m?

Adjusted Risk per 10,000 Live Births
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Gestational Weight Gain Z-Score Gestational weight gain z-score
6.9 10.6 15.3 215 294 82 23 6.8 20.8 42.4
Equivalent Weight Gain at 40 Weeks (kg) Equivalent weight gain at 40 weeks (kg) |

Reported in Leonard SA, Abrams B, Main EK, Lyell DJ, Carmichael SL. Am J Clin Nutr 2020;111:845-853.



Multiple useful data fields have high validity
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SOURCE: CDC/NCHS, National Vital Statistics System. birth

Publicly accessed at: https://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_02.pdf. Martin JA, Wilson EC, Osterman MJK, et al. Nat Vital Stat Rep
2013;62(2)
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Validity of weight measurements

* Prepregnancy BMI and gestational weight gain reported in vital
statistics data have been found to be overall consistent with medical
records!-?

* However, validity found to vary by patient characteristics?
» Separate studies have reported lower validity for Black patients than White patients

 Systematic review found people tend to underreport prepregnancy
and delivery weight and overreport gestational weight gain =2
moderate misclassification of BMI/GWG categories that largely does
not bias associations?

'Bodnar LM, Abrams B, Bertolet M, et al. Paediatr Perinat Epidemiol 2014;28:203-212
2Deputy NP, Sharma AJ, Bombard JM, et al. Epidemiology 2019;30(1):154-159
3Headen |, Cohen AK, Mujahid M, Abrams B. Obesity Rev 2017;18(3):350-369 1




Challenges in linking to other datasets

* Valid clinical information in vital statistics is limited, but linkage to
other datasets is typically probabilistic and often prohibitive
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Medical claims data

 (Claims data include patient encounter information, including
diagnoses and procedures

e (Claims data may also include information on:
 Billed and paid amounts
e Demographics
* Enrollmentin aninsurance program
* Medications
e Laboratory values

e Commonly used nationwide claims datasets include Medicaid
research files, Merative™ MarketScan®, Optum Clinformatics,
Veterans Affairs, National Inpatient Sample, others
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Promises of claims data

* Large, generalizable patient groups

* Data often longitudinal

* Detailed information on diagnoses, procedures, and often medications
* Multiple types of pregnancy outcomes (not limited to live births)

* Can be linked to other datasets: vital statistics, EHR data
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Pitfalls of claims data

 Limited information on weight, height, and demographic details
e Often reliant on ICD-10-CM codes for BMI group

* Barriers to linking maternal-child pairs

* Lag time from data collection to research

» Often costly or difficult to obtain access

* Data management, storage, and analysis can be challenging

Stanford University
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Weight & height measured by healthcare
professionals & recorded in EHR system
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Data aggregated and shared for research purposes
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Multi-site EHR cohorts can have higher
generalizability and sample size
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Distributed data network studies leverage common
data models for reproducibility & rigor: OHDSI
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Centralized EHR datasets have massive sample
sizes: Epic Cosmos

Cosmos is a dataset created in collaboration with a community of health systems using
Epic and is designed to improve patient care. By combining their data, participating
organizations and Epic can make new discoveries and advance medicine. Cosmos also
powers tools at the point of care, providing insights to clinicians that are tailored to the
patient in front of them.

Cosmos Community
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Images from: https://cosmos.epic.com/
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Multiple potential sources of bias

* Missingness of weight & height data can be high and differentially
higher in healthier people!?

* Challenging to identify and correct erroneous values?

* Weight is not universally measured at start and end of pregnancy

* Weight at first prenatal care visit is often used as proxy measure of
prepregnancy weight, and weight at last prenatal care visit as proxy measure
of delivery weight

* Depending on visit timing, this could result in biasing prepregnancy BMI up
and gestational weight gain down

1. Rea S, et al. AMIA Jt Summits Transl Sci Proc 2013;214-218
2. Baer HJ, et al. JAMA Internal Med 2013;173(17):1648-1652

3. Guide A, et al. J Biomed Informatics 2024; 104660
25







Conclusions

* Big data sources have advanced in recent years and have important
strengths of large size and generalizability

» Researchers and policy makers should consider the strengths and
weaknesses of big data sources for prepregnancy BMI and gestational
weight gain

Stanford University
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Research gaps

» Updated validation studies for trajectory of weight from before to the
end of pregnancy in different big data sources

* Methods to improve the internal validity of research using maternal
weight, height, and BMI values in big data sources

Stanford University
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