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Importance of Mountain Snow



Where is snow most important for humans?

Global regions with significant amount (>20%) of estimated annual runoff generated from snowmelt




Where is snow most important for humans?

Global regions with significant amount of annual freshwater runoff used for irrigation, industrial, and domestic use
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Where is snow most important for humans?

Global {IBUHEHELH where snow-derived runoff contributes significantly to downstream human water use

Nexus areas are the midlatitude mountain “water towers” of the globe, including those over the Western U.S., Andes, High Mountain Asia, and the Alps
-> These snow-derived water supply headwaters are inherently trans-boundary in nature



Challenge of characterizing mountain SWE



“Estimating the spatial distribution of snow water equivalent
(SWE) in mountainous terrain is currently the most important
unsolved problem in snow hydrology. ... Good characterization
of the snow is necessary to make informed choices about water
resources and adaptation to climate change and variability.”
(Dozier et al., 2016)

“Among all areas of hydrologic remote sensing, ... SWE ... is the
one that is most in need of new strategic thinking from the
hydrologic community.” (Lettenmaier et al., 2015)




Measuring mountain SWE

Snow remote sensing in the optical (visible/near infrared spectrum) among the most successful
demonstrations of land surface remote sensing (late 1970s — present)
- only provides retrieval of fractional snow covered area (fSCA, not SWE)
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g There has never been a dedlcated SWE satelllte mission

—> Opportunistic SWE retrieval algorithms from Passive or Active Microwave missions

- Confounding factors: snowpack stratigraphy, grain size, and liquid water content, forest, sub-grid
heterogeneity
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Lack of mountain SWE observations mean estimates of snow storage and fluxes are mostly model- based




How well do models estimate mountain SWE?
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Toward the improved estimation of mountain SWE



Data assimilation as an enabling estimation tool

* Probabilistic (Bayesian) estimation approach
* provides mathematical framework for merging disparate information with varying
space-time scales/uncertainties
* Measurements (e.g., remote sensing):
» characterized by their distribution (i.e., including measurement error)
 often indirectly related to state variable of interest (e.g., fSCA vs. SWE) = a direct
“retrieval” approach does not always work well
* Physically-based models provide prior estimate
* inputs are key source of auxiliary information; physics embedded in estimates
* model propagates uncertainty and relates modeled state to measured state

* Posterior estimate obtained by conditioning prior on measurements
» examples: Kalman or particle filtering/smoothing
* sometimes referred to as “reanalysis” methods



Utilizing the historical 30+ year optical record of
fractional snow-covered area (fSCA) measurements



Bayesian Snow Reanalysis Framework
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Bayesian Snow Reanalysis Framework
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Method development and dataset history

1. Sierra Nevada
[1985-2016]
(Margulis et al. 2016)
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2. Central Andes

3. High Mountain Asia
[2000-2017]
(Liu et al. 2021)
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(Cortes & Margulis 2017)

Estimates have been verified against all available in-situ and airborne data
Datasets available via NSIDC or Margulis group websites




Datasets provide new physical insight

1. Sierra Nevada
[1985-2016]
(Margulis et al. 2016)
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So how WeII do models estimate mountain SWE?
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So how well do mode
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Resolving key spatial features (Andes)
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Summary of recent work

* Developed multi-decadal retrospective mountain SWE datasets over
WUS, HMA, and Andes using data assimilation framework with long-
term fSCA record

» Snow storage, snow drought, snowfall climatology, orographic enhancement
and atmospheric rivers impact on snow storage in Sierra Nevada (Margulis et
al., 2016a,b; Huning and Margulis, 2017; 2018; Huning et al., 2017)

» Impacts of El Nino/La Nina on inter-annual Andes snow accumulation (Cortes
and Margulis, 2017) and impacts of atmospheric rivers on intra- and inter-
annual snow storage (Saavedra et al., 2020)

» Evaluation of climatology, spatial patterns, and global reanalysis snow
storage products over High Mountain Asia (Liu et al., 2021, 2022), WUS and
Andes (Fang et al., 2023)



Future Work

* Expanding retrospective applications using historical fSCA data to global
harmonized data products

» Goal: Global harmonized midlatitude mountain snow reanalysis datasets in at the
end of each water year

* Learning from historical observation-constrained datasets to improve
forecasting/projection models

» Goal: Use new datasets, that more realistically represent space-time dynamics of
mountain snow, to better inform existing models and/or develop new ones

* Developing new satellite measurement capabilities for near-real-time SWE
estimation

» Goal: Develop the first-ever SWE-focused satellite mission concept (e.g., “SnoWatch”
using existing signals of opportunity from communication satellite in collaboration
with JPL)

» Goal: Use other satellite missions (e.g., C-band ESA Sentinel-1), L-band NISAR) to
provide potential new measurements useful for SWE characterization
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