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What is the currently accepted definition of NAMs?

It depends who you ask...

According to the NIH, NAMs (New Approach Methods) describe “any technology,
methodology, approach, or combination thereof that can be used to provide information
on chemical hazard and risk assessment that replaces, reduces, or refines the use of

animals.”
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Kidney chips vs. kidney organoids
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* Engineered microchips with primary adult human kidney cells in tubular * Derived from human iPS cells which have the potential to form full
geometry. complement of cells

* Cellular components are encased in hydrogel extracellular matrix. * iPScelllines are permanent & gene editable.
* Recapitulates fluid shear stress and mechanical strain observed in vivo. * Contiguous nephron segments enable interactions of diverse cell types
 Mediato cell ratios (flow rates) approximate physiological values. *  Exhibit structural phenotypes of disease such as tubular cyst formation.
* |nputs and outputs can be introduced from apical (lumenal) surface or * Amenable to high-throughput formats (384-well) and automated

basal (peritubular) surface of cells. production 4



Overview of uses of kidney chips in space

* Kidney health in space exploration
 Kidney stone prevention and treatment in microgravity

* Kidney aging and countermeasures
* Pharmacokinetics



Kidney health in microgravity: * IL-6 with serum exposure
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Kidney stone risk in microgravity

Factors that may ™ risk:

* Pseudo-dehydration

* Altered fluid distribution
* Bone resorption

* High protein diet

* High sodium diet




Kidney stone microcrystal response & countermeasures
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Kidney aging — does microgravity = ground aging?

Figure adapted from PMID 38977884
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Article https://doi.org/10.1038/541467-024-49212-1

Cosmic kidney disease: an integrated pan-
omic, physiological and morphological study
into spaceflight-induced renal dysfunction

We found that
spaceflight induces: 1) renal transporter dephosphorylation which may indi-
cate astronauts’ increased risk of nephrolithiasis is in part a primary renal
phenomenon rather than solely a secondary consequence of bone loss; 2)
remodelling of the nephron that results in expansion of distal convoluted
tubule size but loss of overall tubule density; 3) renal damage and dysfunction
when exposed to a Mars roundtrip dose-equivalent of simulated GCR.

PMID 38862484



Do kidney MPS age (ground experiments)?
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Do kidney cells in MPS undergo aging?

Can we use a microgravity accelerated aging model to
understand kidney aging and test anti-aging drugs?
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Pharmacokinetics- using MPS to model human exposure
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The future... where do we go from here?

* Extended duration experimentation to simulate effects of long-
term space exploration

* Multi-system models (but only with good justification)

* Use of microgravity as a tool to study ground-based health
conditions

* Strategic targeting of health conditions and countermeasures

* Integrate NAMs, computational tools, banked biosamples

* Standardization of lab facilities and opportunities for iterative
experimentation
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Which system is “best”?

All systems have advantages and disadvantages

Advantages Complex whole-body system Easier to interpret findings Multiple cell types
Inexpensive Moderate content data Inexpensive
High content data Human cells and tissues Can be easily gene edited
Regulatory acceptance Controllable system Disease phenotype
Reproducibility Stem cell derived
Disadvantages Ethically challenging Low/moderate throughput Cell disorganization, flow path
Not always translatable to humans  Limited to few cell types Semi-differentiated cells (fetal)
Mechanism cannot always be Expensive Variability in culture
determined Technically challenging Regulatory acceptance unclear

Regulatory acceptance unclear
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