Exploring Benefits and Risks of Synthetic Cells Applied to Agriculture


Abhishek Singharoy, Ph.D. and Jeffrey Zaleski, Ph.D.

Program Managers, Biological Technologies Office

National Academy of Sciences Information Gathering Session

24 September 2025

Target Approaches/Benefits

- Synthetic Biology needs to find its own way in addressing DBTL (Agile vs. Waterfall)
- Fully embracing AI/ML Both in the DBTL process as well as an enabler for predictive design for the added environmental dimensions of where Defense Biosensors will operate
- Whole cell models to study redundancy and evolvability of cells
 - ✓ Handling multi-target gene editing by controlling redundancy of cells
 - ✓ Conquering dark interactome beyond binary interactions for studying pathogen-host crosstalk
- Modular Open System Architecture "Biosensors Defense Weapon System" (options for vendors, system integrators and capabilities across the mission space)
- Detection Limits Related to Microbial Quiescence (dormancy) and Senescence (aging)
- Enhanced or Bypassed Photosynthesis through over-expression, transcription, regulation and altered pathways
- Climate Resilience via Better H₂O and CO₂ Use Efficiency

Risks Mitigation

- Kill Switches Using CRISPER, via External Agent for Survival, or Toxin/Antitoxin Systems
- Synthetic Auxotrophy—Dependence on Non-Native Molecules or Metabolites (e.g. Phosphite, NSAA)