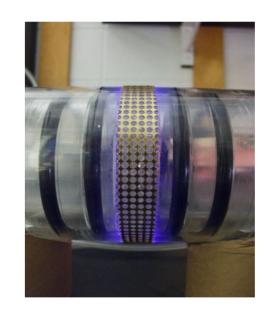


Wearable Air Curtains:
Novel Respiratory
Protection Against
Airborne Pathogens

Opportunity + Complementary Collaborators = Innovation

Funding:



Non-thermal plasmas (NTPs) for air disinfection

- A non-thermal plasma is an ionized (charged) state of matter, induced by imposing strong electric, magnetic fields
 - used in electronics, fabrication of microelectronics, chemical catalysis
- Air disinfection by NTP exposure is challenging:
 - short exposure times (100s of msec)
 - possible interference phenomena (charged aerosols, EHD)
 - deep dilution from liquid nebulization into air, impacting LOD\
 - ozone mitigation
- NTP treatment of viral aerosols presents additional challenges
 - indirect assays involving effects on host organism
 - tedious propagation, purification, and enumeration

Performance Comparison

Non-thermal Plasma vs. UV-C and HEPA filters

	HEPA Filter ¹	UV-C ²	NTP ³
Pathogen reduction	97%	99%	> 99%
Air flow rate	36 LPM	60 LPM	170 LPM
Pressure drop	60 Pa (0.24 in. H ₂ O)	N/A	45 Pa (0.18 in. H ₂ O)
Flow area	3100 cm ²	20 cm ²	71 cm ²
Treatment volume	7874 cm ³	550 cm ³ 181 cm ³	

¹ Zhang et al., ASHRAE J., August 2020

²Tseng and Li, *Aerosol Sci. Tech.* **39** (2005), 1136

³Xia et al., *J. Physics D* **52** (2019), 255201

Performance Comparison

Non-thermal Plasma vs. UV-C and HEPA filters

	HEPA Filter ¹	UV-C ²	NTP ³	NTP Advantage
Pathogen reduction	97%	99%	> 99%	Greater
Air flow rate	36 LPM	60 LPM	170 LPM	2.8X - 4.5X higher
Pressure drop	60 Pa (0.24 in. H ₂ O)	N/A	45 Pa (0.18 in. H ₂ O)	25% lower than HEPA
Flow area	3100 cm ²	20 cm ²	71 cm ²	44X smaller than HEPA
Treatment volume	7874 cm ³	550 cm ³	181 cm ³	3X – 44X smaller

¹ Zhang et al., ASHRAE J., August 2020

²Tseng and Li, *Aerosol Sci. Tech.* **39** (2005), 1136

³Xia et al., *J. Physics D* **52** (2019), 255201

October 2019: JLabs & BARDA launch **Invisible Shield QuickFire Challenge**

Funding:

Johnson Johnson Innovation JLABS

- Goal: ".... solutions that repel and protect against airborne viruses while integrating seamlessly into everyday life."
- Taza Aya's plasma-enabled wearable air curtain concept would feature:
 - no need for fit testing
 - no breathing resistance
 - protection for all ages, face shapes, and with facial hair
 - protection while eating, drinking
 - no fogging of glasses or goggles
 - no contact irritation of skin or sore ears
 - unimpeded communication for DHH and bilingual or heavily accented speakers

COVID-19 brought forth a paradigm shift, reluctantly....

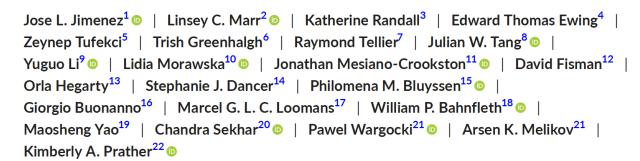
Clinical Infectious Diseases

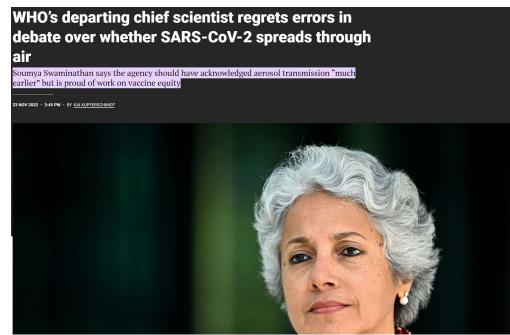
INVITED COMMENTARY

It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19)

Lidia Morawska¹ and Donald K. Milton²

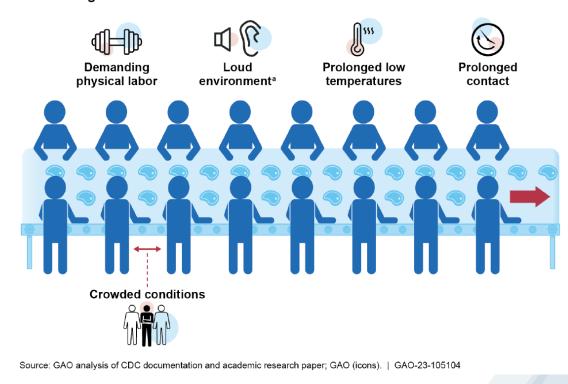
1 International Laboratory for Air Quality and Heath, WHO Collaborating Centre, Queensland University of Technology, Brisbane, Australia, and 2 Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA


Accepted: 30 May 2022 Received: 12 November 2021 Revised: 25 May 2022


DOI: 10.1111/ina.13070

REVIEW

WILEY


What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic?

COVID-19 brought forth a paradigm shift, reluctantly.... supported by epidemiological data

Figure 2: Conditions in Meat and Poultry Plants that Affect Workers' Risk of Contracting COVID-19

United States Government Accountability Office
Report to Congressional Addressees

June 2023

MEAT AND POULTRY
WORKER SAFETY

OSHA Should
Determine How to
Address Persistent
Hazards Exacerbated
by COVID-19

September 2022: USDA launches invitation-only Meat and Poultry Processing Research Initiative

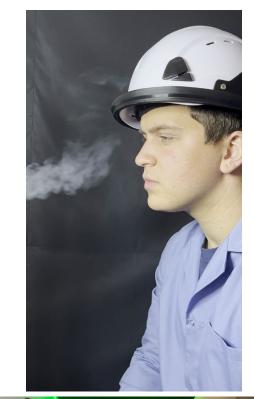
- Priority Area 2: Worker Safety: ".... modifications could include, but are not limited to sanitation strategies to mitigate communicable diseases (e.g., COVID-19)...."
- Two-piece design preferred over "all-in-one" visor:
 - minimizes additional weight on head
 - preserves existing choice for head protection
 - easy to add to normal PPE ensemble

Prime:

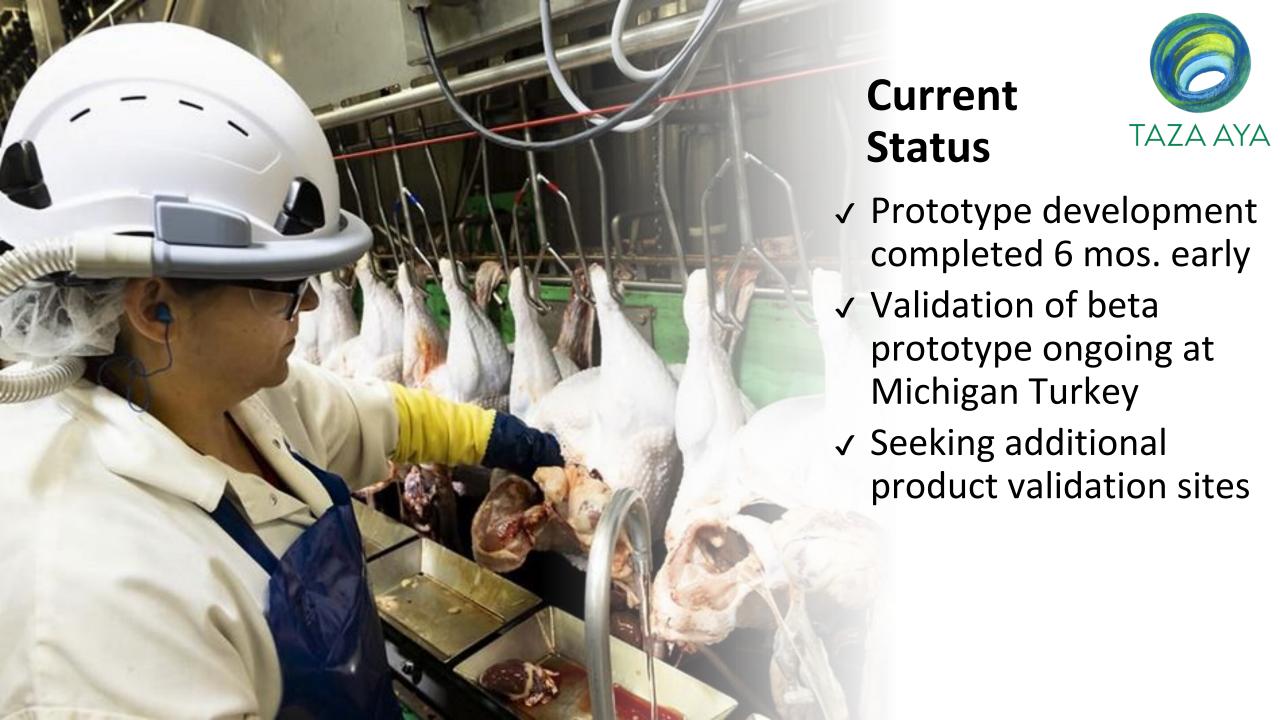
Partners:

Funding:

Taza Aya's plasma-enabled wearable air curtain


- Current beta prototype in user validation testing at Michigan Turkey.
- Key features:
 - 3DP nozzle array attaches to existing hard hat
 - 9.5 lb hardshell backpack with ergonomic harness contains electro-mechanical components
 - > 7.5 hr battery life
- Key benefits:
 - No breathing resistance
 - No fogging of safety goggles / eyewear
 - Allows communication through facial expressions
 - Clearer spoken communication, especially for multilingual users

Demonstrated Performance


99.8% reduction in inhaled viral aerosols by the user (3rd-party testing)

95% reduction in inhaled viral aerosols by an unprotected bystander (at 2 ACH) (3rd-party testing)

> 90% NTP inactivation of viral aerosols; up to 99.2% (Taza Aya test results)

Contact us:

Airborne transmission: Collective protection vs. PPE approaches

- Analogy: "cold flame"
- More common NTP uses:
 - surface treatment (surgical tools, Si wafer fabrication, accelerated seed germination)
 - batch liquids (PFAS remediation, plasma-activated water)
- What's different for air disinfection?
 - msec exposure, not mins or hrs
 - aerosol dynamics, charged & uncharged
 - dilute concentrations can challenge detection limit of many analytical methods
 - disinfection effectiveness determined by microbiological assays (slow)

Airborne virus inactivation via non-thermal plasma

- Analogy: "cold flame"
- More common NTP uses:
 - surface treatment (surgical tools, Si wafer fabrication, accelerated seed germination)
 - batch liquids (PFAS remediation, plasma-activated water)
- What's different for air disinfection?
 - msec exposure, not mins or hrs
 - aerosol dynamics, charged & uncharged
 - dilute concentrations can challenge detection limit of many analytical methods
 - disinfection effectiveness determined by microbiological assays (slow)