NASEM-KFAS Precision Medicine Workshop, Washington, D.C. Oct 14-16, 2025

Leveraging animal model populations for Precision Nutrition

Folami Ideraabdullah, PhD
Associate Professor
Department of Genetics, Department of Nutrition
University of North Carolina at Chapel Hill

Precision Nutrition - One size does not fit all

Nutrient needs differ by individual

Age

• Fetus vs. child vs. adult vs. aged adult

Sex

• Female vs. male

Reproductive status

• Pregnant vs. non pregnant

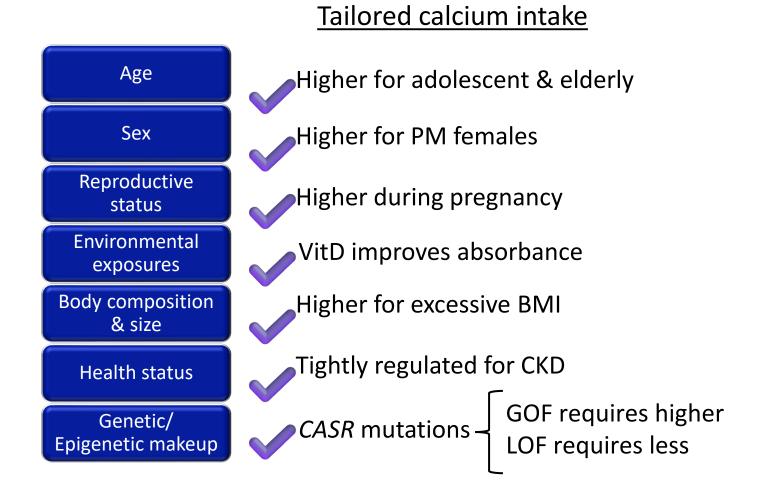
Environmental exposures

• Co-exposure interactions

Body composition & size

• Lean vs. fat mass, Tall vs. short

Health status


Healthy vs. diseased

Genetic/ Epigenetic makeup

• ACGT vs. AGGT, methylation status

Precision Nutrition - Recommendations tailored to different needs

Gene-diet interactions (GxE) - Nutrients regulate the genome

❖ Nutrients are the building blocks of the genome and epigenome nucleotides Cofactors Nucleic acids (DNA & RNA) Signaling molecules amino acids **Modifications** proteins - methylation acetylation - etc..

Gene-diet interactions (GxE) - The genome regulates nutrition

❖ Genes regulate essential **systemic** nutrient processing

Absorption in the GI tract

- Digestion
- Transport

Metabolism

- Enzymatic activity for activation and degradation
- Transport

Storage & bioavailability

Excretion

How do we define these gene x diet interactions?

Traditional animal models

Measure range in differences Identify causal factors driving variability

- -Relevant mechanism
- -Relevant tissue & timing

Measure interactions (gene x diet, gene x gene)

- Responsiveness across different genetic backgrounds/lineages

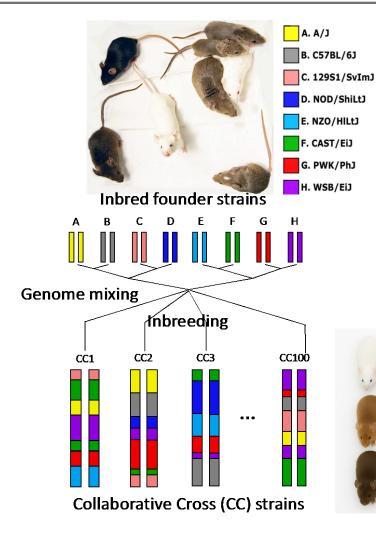
Limitations in humans

- Requires very large sample sizes
 costly w/ complicated logistics
- Many uncontrollable confounders

 impacts establishing causality
- Many inaccessible tissues/ timings

Limitations in traditional models

- Requires conserved mechanism
- Uses severe conditions/ gene knockouts that rarely/don't occur in nature
- Single genetic background
 - Lack population level data


Animal model genetic reference populations

- A genetically diverse population of animal models (eg. mice)
 10-100 lines/strains
- Many populations contain inbred strains (genetically identical genomes)
- Ability to control & isolate environmental exposures
- Used to mimic & study effects from diverse human populations

Collaborative Cross (CC) – Mouse Model Population

~60 genetic backgrounds (strains)

- High level of "naturally occurring" genetic differences among strains
- Novel gene x gene interactions that drive higher phenotypic diversity among strains including novel phenotypes
- Inbred genetically identical within strains

Genome	SNPs
Human	10 x 10 ⁶
СС	43 x 10 ⁶

CC strains carry novel phenotypes that may better mimic humans

> Science. 2014 Nov 21;346(6212):987-91. doi: 10.1126/science.1259595. Epub 2014 Oct 30.

Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance

```
Angela L Rasmussen <sup>1</sup>, Atsushi Okumura <sup>2</sup>, Martin T Ferris <sup>3</sup>, Richard Green <sup>1</sup>, Friederike Feldmann <sup>4</sup>, Sara M Kelly <sup>1</sup>, Dana P Scott <sup>4</sup>, David Safronetz <sup>5</sup>, Elaine Haddock <sup>5</sup>, Rachel LaCasse <sup>4</sup>, Matthew J Thomas <sup>1</sup>, Pavel Sova <sup>1</sup>, Victoria S Carter <sup>1</sup>, Jeffrey M Weiss <sup>1</sup>, Darla R Miller <sup>3</sup>, Ginger D Shaw <sup>3</sup>, Marcus J Korth <sup>1</sup>, Mark T Heise <sup>6</sup>, Ralph S Baric <sup>7</sup>, Fernando Pardo-Manuel de Villena <sup>3</sup>, Heinz Feldmann <sup>5</sup>, Michael G Katze <sup>8</sup>
```

> Mamm Genome. 2014 Apr;25(3-4):95-108. doi: 10.1007/s00335-013-9499-2. Epub 2014 Feb 1.

The Collaborative Cross as a resource for modeling human disease: CC011/Unc, a new mouse model for spontaneous colitis

Allison R Rogala ¹, Andrew P Morgan, Alexis M Christensen, Terry J Gooch, Timothy A Bell, Darla R Miller, Virginia L Godfrey, Fernando Pardo-Manuel de Villena

> Front Behav Neurosci. 2022 Oct 5:16:886524. doi: 10.3389/fnbeh.2022.886524. eCollection 2022.

The collaborative cross strains and their founders vary widely in cocaine-induced behavioral sensitization

```
Sarah A Schoenrock <sup>1 2</sup>, Leona Gagnon <sup>2 3</sup>, Ashley Olson <sup>2 3</sup>, Michael Leonardo <sup>2 3</sup>, Vivek M Philip <sup>2 3</sup>, Hao He <sup>2 3</sup>, Laura G Reinholdt <sup>2 3</sup>, Stacey J Sukoff Rizzo <sup>2 3 4</sup>, James D Jentsch <sup>2 5</sup>, Elissa J Chesler <sup>2 3</sup>, Lisa M Tarantino <sup>1 2 6</sup>
```

CC strains used to map susceptibility loci/genes

> G3 (Bethesda). 2017 Jun 7;7(6):1653-1663. doi: 10.1534/g3.117.041434.

Allelic Variation in the Toll-Like Receptor Adaptor Protein *Ticam2* Contributes to SARS-Coronavirus Pathogenesis in Mice

```
Lisa E Gralinski <sup>1</sup>, Vineet D Menachery <sup>1</sup>, Andrew P Morgan <sup>2</sup>, Allison L Totura <sup>3</sup>, Anne Beall <sup>2</sup>, Jacob Kocher <sup>1</sup>, Jessica Plante <sup>1</sup>, D Corinne Harrison-Shostak <sup>2</sup>, Alexandra Schäfer <sup>1</sup>, Fernando Pardo-Manuel de Villena <sup>2</sup>, Martin T Ferris <sup>2</sup>, Ralph S Baric <sup>5</sup>, <sup>3</sup>, <sup>4</sup>
```

> mBio. 2020 Mar 3;11(2):e00097-20. doi: 10.1128/mBio.00097-20.

Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease

```
Nicola Ivan Lorè <sup>1 2</sup>, Barbara Sipione <sup>3</sup>, Gengming He <sup>4</sup>, Lisa J Strug <sup>4 5</sup>, Hanifa J Atamni <sup>6</sup>, Alexandra Dorman <sup>6</sup>, Richard Mott <sup>7</sup>, Fuad A Iraqi <sup>6</sup>, Alexandra Bragonzi <sup>1</sup>
```

> J Allergy Clin Immunol. 2024 Aug;154(2):387-397. doi: 10.1016/j.jaci.2024.03.027. Epub 2024 Apr 24.

A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice

```
Ellen L Risemberg <sup>1</sup>, Johanna M Smeekens <sup>2</sup>, Marta C Cruz Cisneros <sup>3</sup>, Brea K Hampton <sup>3</sup>, Pablo Hock <sup>4</sup>, Colton L Linnertz <sup>4</sup>, Darla R Miller <sup>4</sup>, Kelly Orgel <sup>2</sup>, Ginger D Shaw <sup>5</sup>, Fernando Pardo Manuel de Villena <sup>5</sup>, A Wesley Burks <sup>2</sup>, William Valdar <sup>6</sup>, Michael D Kulis <sup>7</sup>, Martin T Ferris <sup>8</sup>
```

Leveraging the CC to study interindividual nutrient needs

KIDNEY

Primary biomarker

Primary active metabolite

Calcidiol (biomarker)

Leveraged diverse genetic backgrounds and controlled diets

> Endocrinology. 2025 Sep 8;166(10):bqaf138. doi: 10.1210/endocr/bqaf138.

Interindividual Genetic Differences Drive Discordance Between Serum Calcidiol and Calcitriol Concentrations in Females

Elizabeth K Hutchins ¹, Changran Niu ², Jing Xue ¹, Debin Wan ³, Carolina V Campos ¹, Molly Warren ¹, Megan M Knuth ¹, Michael B Whalen ¹, Venkata S Voruganti ², Rafiou Agoro ⁶, James C Fleet ⁷, Bruce D Hammock ³, Folami Ideraabdullah ¹, ², ⁵,

Found

- Genetically determined variability in VitD status (calcidiol)
- Response to dietary VitD depletion differs by genetic background

Leveraged genetically identical mice for repeated measures

Found

- Low calcitriol can be genetically determined – not predicted by biomarker

Leveraged simultaneous access to all tissues & cell types

Found

Candidate mechanism & genes:
 Low calcitriol likely driven by impaired transport of calcidiol into the kidney for activation

Leveraged simultaneous access to all tissues & cell types

Potential physiological impact:

Strains with genetically determined low calcitriol exhibit evidence of impaired VitD signaling.

Summary

Animal model populations extend our reach for understanding the factors driving interindividual differences in human populations

1. All the benefits of traditional single lineage models

- Access to tissues or developmental timings inaccessible in humans for systems biology approach
- Controlled manipulation to study effects of individual "normal" or "perturbed" conditions
- Biological replicates improve statistical power (smaller sample size) and allow for integrating findings between studies

2. Study "naturally occurring" genetic differences including gene-gene interactions

- Measure the range in phenotypic outcomes population level effects
- Measure efficacy of treatment/intervention on different backgrounds

3. Define causality

- Gene discovery Map causal genes through linkage analyses
- Define biological mechanisms underlying vital biomarkers
- Identify novel susceptibility markers that can be tested in human populations