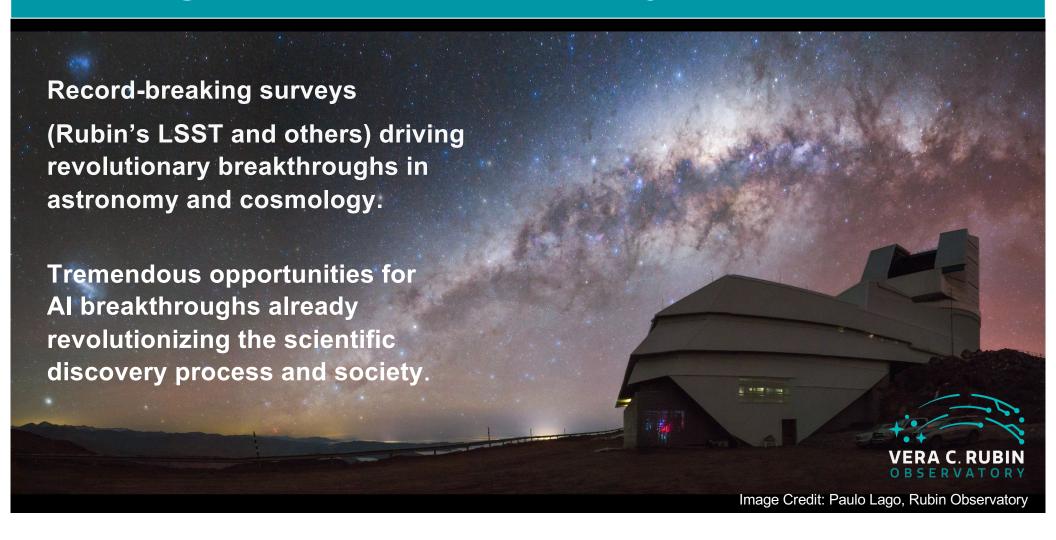
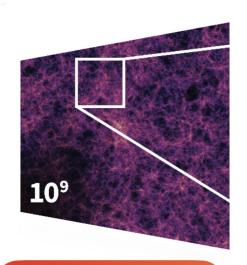
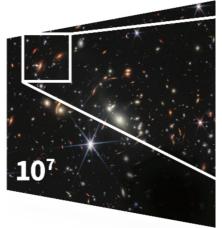
National Al Institute for the Sky | SkAl Institute

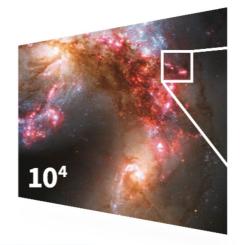
CAA Fall 2025 Meeting

October 7, 2025




Convergence Time in Astronomy and Al




SkAl's Mission: Seize the joint potential of Astro and Al Revolutions Astro-Al Hub serving as **Nexus for:** Research & Education Innovation **Legacy Research Community Tools** - Collaborative Workforce Development Public Engagement

"Cosmic Abundance" PC: NSF-DOE Vera C. Rubin Observator

SkAl Institute: Bridging Scales Across Astrophysics

Cosmology and the Early Universe

Galaxy Formation and Evolution

Stars, Compact Objects and their Transients

Bridging Scales Across Astrophysics & Al

Astrophysics

Stars, Compact Objects, and their Transients

Galaxy Formation and Evolution

Cosmology and the Early Universe

Foundational Al

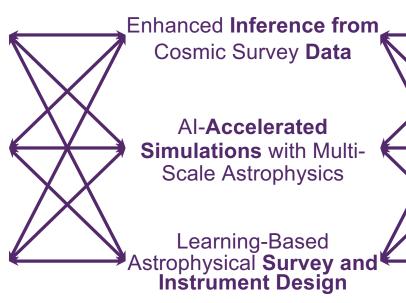
Generative Models

Astrophysics-Informed and Interpretable Architectures

Uncertainty Quantification

Bridging Scales Across Astrophysics & Al

Astrophysics


Research Pillars

Foundational Al

Stars, Compact Objects, and their Transients

Galaxy Formation and Evolution

Cosmology and the Early Universe

Generative Models

Astrophysics-Informed and Interpretable Architectures

Uncertainty Quantification

SkAl Institute: Overview

Research Impact

- Trustworthy AI
- National Astro-Al Network
- MSI Partnerships
- Early-career **Professional** Learning

Astro Areas

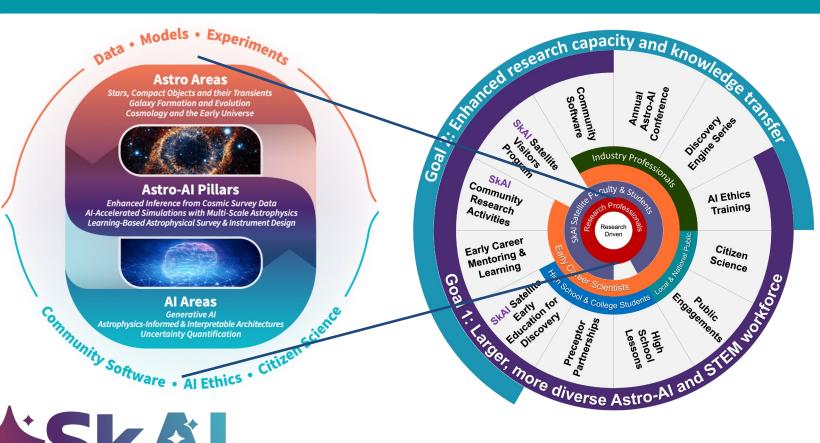
Stars. Compact Objects and their Transients **Galaxy Formation and Evolution** Cosmology and the Early Universe

Astro-Al Pillars

Enhanced Inference from Cosmic Survey Data AI-Accelerated Simulations with Multi-Scale Astrophysics Learning-Based Astrophysical Survey & Instrument Design

Al Areas

Generative Al Astrophysics-Informed & Interpretable Architectures Uncertainty Quantification


Software • Al Ethics • Citizen Science

Community Impact

- Diverse STEM Workforce
- Public Engagement through Art
- (In)Formal Astro-Al Education
- Industry Experiences

SkAl Institute: Overview

SkAl Institutional Hub

Lead Institutions Partner Institutions

CITY COLLEGES® of CHICAGO

Art Partners

Satellite Network

SkAl as a Geographic Hub

SkAl Institute: Executive Board

Chihway Chang UC

Aggelos Katsaggelos NU

Gautham Narayan UIUC

Tjitske Starkenburg NU

Rebecca Willett UC

Michael Zevin Adler

Michael Maire UC

External Advisory Board

Federica Bianco Physics & Astronomy, University of Delaware Associate Professor

Astronomy, University of Washington Professor

Angus Forbes Engagement Team, **NVIDIA** Strategic Researcher

Dan Foreman-Mackey JAX, Google Deepmind Research Engineer

Tara Javidi Electrical & Computer Eng. UC San Diego Professor

J. Nathan Kutz Applied Mathematics, University of Washington Professor

Year 1 External Advisory Board Meeting

September 8–9, 2025 SkAl Hub

Oxford University Professor

Roummel Marcia Applied Mathematics, **UC Merced** Professor

Inaugural SkAl Conference

Open SkAl 2025

- Plenary speakers: Federica Bianco (Delaware),
 George Karniadakis (Brown)
- Invited speakers: Rachel Mandelbaum (CMU), Matteo
 Sesia (USC), Fei Sha (Google), Chenhao Tan (UC)
- 70+ contributed presentations
- 50-50 talks/posters (70% non-SkAI)
- Interactive community engagement: Tutorials, Mentoring Lunch, Glossary, SEER

SkAl Research Events

- Works-in-Progress Wednesdays (project updates)
- Journal Club (early-career Co-leads)
- Colloquia (invited external speakers)
- Research Pillar Events (tutorials, hackathons)
- Topical Workshops (coming)

Aim: To enable collaboration, networking, mentoring, and cross-pollination between computer science and astronomy and across career stages.

14

SkAl as a Community Hub: Digital

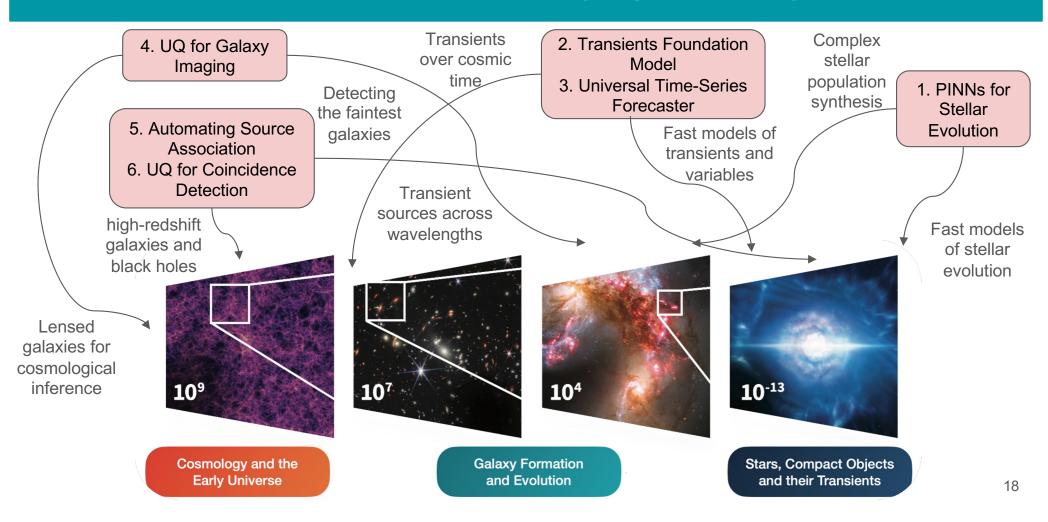
On Wednesday, July 30, 2025, SkAl Institute will host its next SkAl Summer Chalk Talk. SkAl Chalk Talks are a space to meet new people, hear what others are working

Learn about how to join SkAI's different communities (newsletters, Slack, etc.)

Three Research Pillars

- Enhanced Inference from Cosmic Survey Data: time-series forecasting, uncertainty quantification, and multiwavelength data correlation, leveraging data from the Rubin Observatory and other datasets, emphasizing real-world application and scalability
- Al-Accelerated Simulations with Multi-Scale Astrophysics: physicsinformed Al architectures, generative models, and uncertainty quantification to enhance the realism and efficiency of simulations
- Learning-Based Astrophysical Survey and Instrument Design:
 spectrometer design, intelligent scheduling, and rapid transient follow-up

SkAl Research Connections


10 funded projects, the Astro-Al pillars, and the astrophysics and fAl areas

		ASTRO AREAS			ASTRO-AI PILLARS			AI AREAS		
	PROJECTS	AP1: Stars Compact Objects, Transients	AP2: Galaxy Formation and Evolution	AP3: Cosmology and Early Universe	Pillar 1: Enhanced Inference from Cosmic Survey Data	Pillar 2: AI-Accelerated Simulations with Multi- Scale AP	Pillar 3: Learning-Based Survey and Instrument Design	fAI1: Generative AI	fAI2: Astrophysics- Informed and Interpretable Architectures	fAI3: Uncertainty Quantification
Started YR1	1: PINNs for Stellar Evolution									
	2: Transients Foundation Model									
	3: Universal Time-series Forecaster									
	4: Uncertainties for Galaxy Imaging									
	5: Automating Source Association									
	6: UQ for coincidence detection									
Start YR2	7: Cosmology Inverse Problems									
	8: AI-Enabled Spectrometer Design									
	9: Intelligent Survey Scheduling									
	10: Interpretable Latent Spaces									
Unfunded	B3H: Black Box for Black Hole									
	The Data Concierge									

Data Models Experiments

Almost every project involves investigators from multiple institutions.

Examples of SkAl Research Bridging Astrophysical Scales

Research Output and Impact

SkAl Research is taking off!

In first six months project members have had:

- multiple—submitted and in-preparation—publications and proposals (17)
- work presented their YR1 work at conferences and related venues (9)
- releases actual and in-preparation of public dataset and community software (6)

Across SkAI, members:

- were invited to high-impact astro and AI events (4)
- were awarded grants related to SkAl goals (3)
- published many publications with SkAl affiliation & aligned with SkAl mission (49)

Computing and Data Storage Infrastructure

By now we have:

- Assessed SkAl-wide needs (responses from about ~25 projects)
- Tested pilot allocations and runs for system "debugging"
- Established protocols for access to NCSA (application/allocation/access)
- Developed protocols for access to ANL
- Streamlined dashboard monitoring, ticket system, and RSE support
- Developed connection systems to receive live Rubin alerts (LBNL/NERSC)

Zooniverse: Citizen Science Projects

SkAI projects with Zooniverse components

- DELVE Dwarf Search: Identifying ultra-faint dwarf galaxies (beta testing)
- Cosmic Trails and Tails: characterize streams and shells around galaxies (conception phase)
- Automating Bayesian inference of millimeter source association: check multi-wavelength source associations (conception phase)
- SkAl-affiliated Zooniverse projects: Gravity Spy, Dark Energy Explorers, SpaceWarps, Baby Star Search

Nurturing Next-Generation Talent

Building a *multitiered* framework

- Early-Career Workforce Development
- Higher Education: University, College, and Community Colleges
- High School Education
- Informal Learning and Education

Year 1 focus: Foundational planning, recruitment, and outreach, with full programming set to launch in Year 2

Higher Ed: University, College, and Community Colleges

 The Preceptor Program: Focuses on teaching, research, and mentoring to prepare postdocs to be high-impact educators at different types of higher education institutions.

 The Satellite Early Education for Discovery (SEED): SkAl's undergraduate summer research experience

Satellite Network students listen to SkAl researchers present their work during the July 18 Open House.

Mentoring & Professional Development

Because Astro-Al is an emerging interdisciplinary field, ensuring that early-career researchers have mentoring and support from both Astro and Al experts is critical in helping lay a foundation for a nexus of collaboration at SkAl and beyond, where researchers can adeptly navigate both disciplines.

Funded by the U.S. National Science Foundation and the Simons Foundation

Mentoring Goal:

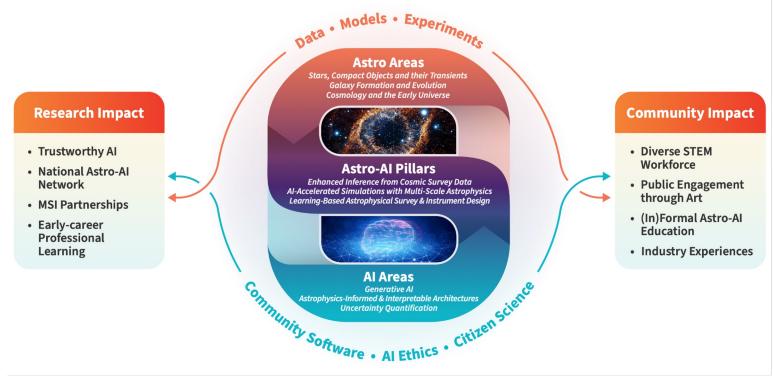
 Establish effective crossdisciplinary, crossinstitutional, and multilevel mentoring.

Professional Development Goals:

- Promote professional learning for and among SkAl earlycareer scientists.
- Train the next generation of leading teaching scholars in the area of Astro and AI.

Mentoring & Professional Development

SkAl's Mentoring and Professional Development


Framework

 Individual mentorship for SkAl postdoc fellows

- Peer mentoring groups for earlycareer participants
- Events to facilitate interaction, knowledge transfer, and interdisciplinary connections

SkAl's Global Mission

